python 滑块验证码破解之获取缺口位置

python 滑块验证码破解之获取缺口位置

Python环境搭建OpenCV
适用于windows
pip install --upgrade setuptools
pip install numpy Matplotlib
pip install opencv-python

注意图片路径指定好,路径不要有中文,最好用/,别用\ 。cv2读不到图片不会报路径错误,先去看路径问题。



#取的验证码图片(大小图)

import cv2
import numpy as np
from PIL import Image as Im

otemp = './xt.png' #原图缺口小图
oblk = './dt.png' #原图缺口大图
target = cv2.imread(otemp, 0)
template = cv2.imread(oblk, 0)
w, h = target.shape[::-1]
temp = './temp.jpg' #临时储存 每次识别覆盖就好了
targ = './targ.jpg' #临时储存 每次识别覆盖就好了
cv2.imwrite(temp, template)
cv2.imwrite(targ, target)
target = cv2.imread(targ)
target = cv2.cvtColor(target, cv2.COLOR_BGR2GRAY)
target = abs(255 - target)
cv2.imwrite(targ, target)
target = cv2.imread(targ)
template = cv2.imread(temp)
result = cv2.matchTemplate(target, template, cv2.TM_CCOEFF_NORMED)
x, y = np.unravel_index(result.argmax(), result.shape)
#缺口位置
print((y, x, w, h))


# 测试 在指定位置画上矩形框
image_path = r'./result.png' #保存测试结果图
image = cv2.imread(otemp)
first_point = (y,x) #定位好的坐标
last_point = (w,h)  #定位好的坐标

cv2.rectangle(image, first_point, last_point, (0, 255, 0), 2)
cv2.imwrite(image_path, image)


最新代码:

import cv2


# 显示或保存图片
def cv_show(name, img, save=False):
    if save:
        cv2.imwrite(name, img)
    cv2.imshow(name, img)
    cv2.waitKey(0)
    cv2.destroyAllWindows()


# 获取滑块的大小
def fix_img(filename):
    #  1.为了更高的准确率,使用二值图像
    img = cv2.imread(filename)
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    ret, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
    # 2.将轮廓提取出来
    contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
    cnt = contours[0]
    # 3.用绿色(0, 255, 0)来画出最小的矩形框架
    x, y, w, h = cv2.boundingRect(cnt)
    rect_x = x + w
    rect_y = y + h
    # print(x, y, rect_x, rect_y)  # x,y是矩阵左上点的坐标,w,h是矩阵的宽和高
    img = cv2.rectangle(img, (x, y), (rect_x, rect_y), (0, 255, 0), 1)
    cv_show('img.png', img, True)  # 用绿色线框画出滑块的大小
    # 高度和宽度
    mixintu = img[y:rect_y, x:rect_x]
    cv_show("mixintu.png", mixintu, True)  # 裁剪出滑块的区域
    return mixintu


def mian():
    # 1.对滑块进行图片处理
    tp_img = fix_img('./fadebg.png')  # 裁掉透明部分,找出滑块的大小
    tp_edge = cv2.Canny(tp_img, 100, 200)
    tp_pic = cv2.cvtColor(tp_edge, cv2.COLOR_GRAY2BGR)
    cv_show("1.png", tp_edge, True)
    # 2.对背景进行图片处理
    bg_img = cv2.imread('fullbg.png')
    bg_edge = cv2.Canny(bg_img, 100, 200)
    bg_pic = cv2.cvtColor(bg_edge, cv2.COLOR_GRAY2BGR)
    cv_show("2.png", bg_pic, True)

    # 3.模板匹配matchTemplate
    res = cv2.matchTemplate(bg_pic, tp_pic, cv2.TM_CCOEFF_NORMED)
    min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)
    # print(min_val, max_val, min_loc, max_loc)  # 最小值,最大值,最小值的位置,最大值的位置

    # 绘制方框【方便查看】
    X = max_loc[0]
    th, tw = tp_pic.shape[:2]
    t1 = max_loc  # 左上角点的位置
    br = (t1[0] + tw, t1[1] + th)  # 右下角点的坐标
    cv2.rectangle(bg_img, t1, br, (0, 0, 225), 2)  # 绘制矩形
    cv_show('out.png', bg_img, True)


if __name__ == '__main__':
    mian()


最新代码转载自:https://blog.csdn.net/mixintu/article/details/109702875

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

_JackSparrow

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值