(想要直接解决问题的请直接拉到最后)
使用的DataFrame的
year | state | pop | debt | |
one | 2000 | Ohio | 1.5 | NaN |
two | 1000 | Ohio | 1.7 | 1000 |
three | 2002 | Ohio | 3.6 | NaN |
four | 2001 | Nevada | 2.4 | -1.5 |
five | 2002 | Nevada | 2.9 | -1.7 |
当使用 frame2['year']['two'] = 10000, 即df名[列名][行名]的方式去赋值就会报错, 提示如下
SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy
进入提示网页, 查找与SettingWithCopyWarning有关部分, 这里简单翻译了一下(渣翻译, 推荐大家去看原文, 在最后几部分里)
chained indexing
这就是出现警告的原因, 我们在使用pandas中要极力避免出现chained index)
下面是一个例子解释到底什么是chained indexing
In [4]: dfmi = pd.DataFrame([list('abcd'), list('efgh'), list('ijkl'), list('mnop')],
...: columns=pd.MultiIndex.from_product([['one', 'two'], ['first', 'second']]))
...:
In [5]: dfmi
Out[5]:
one two
first second first second
0 a b c d
1 e f g h
2 i j k l
3 m n o p
我们通过两种不同的方式去访问同一值
#第一种方式
In [6]: dfmi['one']['second']
Out[6]:
0 b
1 f
2 j
3 n
Name: second, dtype: object
#第二种方式
In [7]: dfmi.loc[:,('one', 'second')]
Out[7]:
0 b
1 f
2 j
3 n
Name: (one, second), dtype: object
可以看出虽然访问方式不同, 但是返回的结果是相同的. 相同结果, 但其实第二种访问方式应该是我们所推荐使用的, 原因如下
第一种访问方式
使用dfmi['one']['second']其实是分为两个独立事件完成的, 一个事情接着一件事情发生:
第一步 执行dfmi['one']
第二步 在第一步的基础上执行dfmi_with_one['second'], 相当于在第一步返回Series基础上, 检索索引['second']
看似是一步到位的访问, 其实在内部调用了两次__getitem__
第二种方式访问
fmi.loc[:,('one', 'second')] 相当于将一个嵌套的元组(slice(None), ('one', 'second'))传递给一个__getitem__, 这就使得pandas将其作为一个整体来处理, 第二种方式比第一种方式速度更快
这里的第一种访问方式就是chained indexing, 接下来解决为什么chained indexing会造成警告.
#第二种访问方式(推荐方式)
dfmi.loc[:, ('one', 'second')] = value
#其实在编译器中是这样操作的
dfmi.iloc.setitem((slice(None), ('one', 'second')), value)
#但是这一段代码编译器处理就很不同了
#第一种访问方式chained indexing
dfmi['one']['second'] = value
#其实在编译器中是这样操作的
dfmi.__getitem__('one').__setitem__('second', value)
问题的关键就出在这里的__getitem__上, 因为我们很难预测到这里的__getitem__返回的是一个视图或是一个copy, 因为我们无法确定__setitem))修改的到底是真实的dfmi或是暂时的copy副本, 这就是SettingWithCopy想要警告我们的.
到此问题就算是解决了, 出现警告的原因在于无法预测到底修改的是视图还是副本.
注意
dfmi.loc保证是dfmi本身伴随修改索引行为(这句话有点不太通顺, 大家可以去看看原文, 重点是后面一句), 所以dfmi.loc.__getitem__和dfmi.loc__setitem__方法一定是直接作用在dfmi上的. 当然dfmi.loc.__getitem__(idx)就无法预测到时作用在视图上或是副本上了.
另一种会出现这种警告的情形, 虽然这里并没有明显的链式索引.
In [9]: def do_something(df):
...: foo = df[['bar', 'baz']]
...: #对于foo是视图或是副本, 其实我们是无法得知的
...: foo['quux'] = value
...: return foo
解决警告的方案:
使用 DafaFrameming.loc[行名, 列名] = 值 的方式去赋值, 而不是使用DataFrame[][]的形式去赋值.