问题 E: 确定排序序列
时间限制: 1 Sec 内存限制: 32 MB
题目描述
一个由不同的值组成的按升序排序的序列,通常使用小于操作符,把元素从小到大排列。
例如,有序序列A,B,C,D表示A<B,B<C和C<D。
现给你一组形如A<B的关系,请你确定是否已经形成一个排序的序列。
输入
输入包含多组测试数据。每组输入的第一行是两个正整数n和m。
n表示排序对象的个数,2<=n<=26。排序对象是字母表开始的n个大写字符。
m表示形如A<B的关系的个数。
接下来m行,每行输入一个关系,由三个字符构成:第一个大写字母,符号“<”,第二个大写字母。字母不会超过字母表开始的n个字母的范围。
当n=m=0时,输入结束。
输出
对于每组输入,输出一行。该行将是以下三者之一:
Sorted sequence determined after xxx relations: yyy...y.(在xxx个关系后,确定了排序序列:yyy...y)
Sorted sequence cannot be determined.(不能确定排序序列)
Inconsistency found after xxx relations.(在xxx个关系后,发现关系矛盾)
解释说明:
xxx是处理关系时,确定排序序列已经形成或发现关系矛盾时的关系数目,哪种情况先出现,就输出哪种。yyy...y是排序的升序序列。
样例输入
4 6 A<B A<C B<C C<D B<D A<B 3 2 A<B B<A 26 1 A<Z 0 0
样例输出
Sorted sequence determined after 4 relations: ABCD. Inconsistency found after 2 relations. Sorted sequence cannot be determined.
徐不可说:拓扑排序了解一下!运用拓扑排序的数据结构 判断所给数据满足输出哪种的情况,输入数据给到何时就能够判断出满足的情况。
拓扑排序的实现步骤
- 在有向图中选一个没有前驱的顶点并且输出
- 从图中删除该顶点和所有以它为尾的弧(白话就是:删除所有和它有关的边)
- 重复上述两步,直至所有顶点输出,或者当前图中不存在无前驱的顶点为止,后者代表我们的有向图是有环的,因此,也可以通过拓扑排序来判断一个图是否有环。
#include <iostream> #include <cstdio> #include <cstring> using namespace std; int N, M; const int MAXN = 27, MAXM = 1000; int g[MAXN][MAXN], in[MAXN], ans[MAXN]; int topoSort() { int in1[MAXN]; for(int i = 0; i < N; i++)//定义一个变量数组 { in1[i] = in[i]; } for(int k = 0; k < N; k++) //遍历所有字母 { int i = 0; while(in1[i]!=0) { i++; if(i >= N) //所有的点都有入度,代表它成环 return 2; //成环,矛盾 } ans[k] = i; //入度为0的点 ,放在r里 in1[i]--; //初值为-1 for(int j = 0; j < N; j++) //把他能到达的点的入度全都-1 if(g[i][j]) in1[j]--; } for(int i = 0; i < N-1; i++) //判断连通性 { int ok = 0; if(g[ans[i]][ans[i+1]]) ok = 1; if(!ok) return 1; //不能确定排列序列 } return 0; //确定排序 } int main() { while(scanf("%d%d", &N, &M)!=EOF && !(!N&&!M)) { memset(g, 0, sizeof(g)); memset(in, 0, sizeof(in)); char s[10]; int next = 0; for(int i = 0; i < M; i++) { scanf("%s", s); if(next) continue; int u = s[0] - 'A', v = s[2] - 'A'; //减去A的值作为编号 g[u][v] = 1; //标记连通 in[v]++; //后面的入度+1 int r = topoSort(); if(r == 0) { printf("Sorted sequence determined after %d relations: ", i+1); for(int j = 0; j < N; j++) { printf("%c", ans[j]+'A'); } printf(".\n"); next = 1; continue; } else if(r == 1 && i == M-1) printf("Sorted sequence cannot be determined.\n"); else if(r == 2) { printf("Inconsistency found after %d relations.\n", i+1); next = 1; continue; } } } return 0; }