基于上课不听课,听了跟不上的图论及其应用学习笔记(图)

2.1.1图的定义

  1. 标定图:图的结点和边有名称
  2. 有限图:结点、边的个数有限
  3. n阶图: n个结点
  4. n阶零图: n个结点0条边
  5. 平凡图:只有一个结点,无边
  6. 平行边:两端结点相同,方向相同,平行边数称为重数
  7. 简单图:没有平行边和环

2.1.2结点的度

  1. 悬挂点:度 = 1,相关联的边是悬挂边
  2. 最大度:△ 最大出度:△+ 最大入度:△–
  3. 最小度:δ 最小出度:δ+ 最小入度:δ–
  4. 握手定理:结点度数之和等于边数的2倍
  5. 奇点/奇度结点:度数为奇数;偶点/偶度结点:度数为偶数
  6. 推论:在任何图中,度数为奇数的结点一定为偶数个(只有偶数个奇点度数之和为偶数)

2.1.3完全图、补图、正则图、子图

  1. 完全(简单)图:任意两点之间都有边;Kn:含有n个结点的完全图 边数:n(n-1)/2
  2. 有向完全图:任意两点之间有两条方向相反的边;Dn:含有n个结点的有向完全图 边数:n(n-1)
  3. 竞赛图:有向简单图去掉边方向是无向完全图
  4. K-正则图:每个结点的度数都是k
  5. 彼得森图/3-正则图完全图Kn是(n-1)-正则图
  6. 补图G:由G中的结点,以及完全图中G不存在的边组成的图;G与G互为补图,结点一样,边互补。
  7. 母图和子图:G = <V,E>,G’ =<V’,E’>
    若V’ ⊆V且E’ ⊆E,则G’是G的子图,G是母图,记做G’⊆G
    (1) 若V’⊂ V或E’⊂ E, G’是真子图
    (2) 若V’ = V,G’是生成子图
  8. 边导出子图(G[E’]):有边,补齐结点并连接相同结点的边,组合成图
  9. 点导出子图(G[V’]):有点,补齐任意点之间存在的边,组合成图

2.1.4图的同构

  1. 同构(≌):结点数、边数一样,可以通过变形,扭转变成彼此
  2. 同构的必要条件:结点、边数、度数相同的结点数目相同
  3. 图的简单操作
    删除边e(G-e);删除E’里所有的边(G-E’)
    删除点v(G-v);删除V’里所有的点(G-V’)
    边e收缩:将e两端的结点合为一个结点
    在u,v两点间加新边:G∪(u,v)/G+(u,v)

2.2.1通路

  1. 简单通路:通路里的边不重复(简单回路:起点终点相同)
  2. 路径:通路里的结点不重复
  3. :回路的起点与内部结点互不不同。长度为k,称为k圈,k为奇数为奇圈,偶圈略
  4. 定理2.2.1:n阶G=<V,E>中,若Vi,Vj存在通路,则其长度<=n-1
    推论2.2.1:n阶G=<V,E>中,若Vi,Vj存在通路,则存在长度<=n-1的路径
    定理2.2.2:n阶G=<V,E>中,Vi有自身回路,则一定存在长度<=n-1的回路
    推论2.2.2:n阶G=<V,E>中,若某回路经过Vi,则存在经过Vi且长度不超过n的圈

2.2.2图的连通性

  1. Vi~Vj:Vi,Vj是连通的
  2. 连通图(无向):任意两结点是连通的,平凡图(只有一个点)也是连通图
  3. 连通分支:无向图G=<V,E>,如果V上的连通关系将V划分为k(k>=1)个等价类V1,V2,…,Vk,则称他们的导出子图G[V1]、G[V2]、G[V3]、…、G[Vk]为G的连通分支,其中其个数记为w(G)
    注意:连通关系!!!,比如G是连通图,那么连通分支数就为1,若是森林,有几棵树就是几
  4. 有向图D: Vi→Vj :Vi可达Vj;Vi总是可达自身;Vi ↔ Vj:相互可达
  5. 短程线:Vi、Vj最短通路;d(Vi,Vj):距离;d(Vi,Vj)=∞:不存在通路
  6. 弱连通图:有向图D去掉边的方向后所得无向图G是连通图
    单向连通图:有向图D任意两结点之间至少一个可达(Vi→Vj或者Vj→Vi)
    强连通图:有向图D任意两结点都可达
  7. 定理2.2.3:有向图D是强连通图当且仅当D中存在经过每个结点至少一次的回路
    定理2.2.4:有向图D是单向连通图当且仅当D中存在经过每个结点的通路

2.2.3无向图的连通度

  1. 点割集:无向图G去掉点割集V’中的点后不连通
    设无向图 𝐺 = ⟨𝑉 , 𝐸⟩,若存在 𝑉′ ⊆ 𝑉 且 𝑉′ ≠ ∅,使得 𝜔(𝐺 − 𝑉 ′) > 𝜔(𝐺),而对任意 𝑉″ ⊂ 𝑉 ′,都有 𝜔(𝐺 − 𝑉 ″) = 𝜔(𝐺),则称 𝑉′ 是 𝐺 的点割集
    边割集:无向图G去点边割集E’中的边后不连通
    割点:点割集只有一个元素
    割边/桥:边割集只有一个元素
  2. 点的连通度:G为无向连通图且为非完全图,【连通度】𝜅(G) = min{ |V’||V’为G的点割集|}
    注意:连通度是为了产生一个不连通图所要删除结点的最少数目
    规定完全图Kn(n>=1)的点连通度为 n – 1;非连通图的连通度为0
    𝜅(G) >= K,G是K-连通图
  3. 边连通度:λ(G) = min{ |E’||E’为G的边割集|}为边的连通度,规定非连通图的边连通度为0,又若λ(G)>=r,则称G是r-边连通图
    注意:边连通度是为了产生一个不连通图所要删除边的最少数目
  4. 定理2.2.5:对于任何无向图 𝐺 = ⟨𝑉 , 𝐸⟩,有 𝜅(𝐺) ≤ 𝜆(𝐺) ≤ 𝛿(𝐺)
    定理2.2.6(判断割点):𝐺 = ⟨𝑉 , 𝐸⟩ 为无向连通图,则结点 𝑣 是割点当且仅当存在结点 𝑢 和 𝑤,使得连接 𝑢 和 𝑤 的每条通路都经过 𝑣.
    定理2.2.7(判断割边): 𝐺 = ⟨𝑉 , 𝐸⟩ 为无向连通图,则边 𝑒 是割边的充分必要条件是 𝑒 不包含在 𝐺 的任何简单回路中
  5. 扩大路径法:设 𝐺 = ⟨𝑉 , 𝐸⟩ 为 𝑛 阶无向图,Γ𝑙 为 𝐺 中一条 𝑙 长的路径,若此路径的始点或终点与路径外的结点相邻,则将邻点扩充到路径中来,直到路径的始点和终点不与路径外的结点相邻为止.设最后得到的 𝑙 + 𝑘 长路径为 Γ𝑙+𝑘,称 Γ𝑙+𝑘 为极大路径
  6. 二部图(二分图/偶图):无向图𝐺 = ⟨𝑉 , 𝐸⟩ ,若存在 𝑉 划分 𝑉1, 𝑉2,使得 𝐺 中任意边的两个端点都分别属于 𝑉1 和𝑉2,则称 𝐺 为二部图 ,称 𝑉1 和 𝑉2 为互补结点子集.常将二部图 𝐺 记为二部划分形式 ⟨𝑉1, 𝑉2, 𝐸⟩.
    完全二部图:若𝑉1中的每个结点都与 𝑉2所有结点相邻则称其为完全二部图,记为 𝐾𝑟,𝑠,其中 |𝑉1| = 𝑟,|𝑉2| = 𝑠
    二部图判定:无向图𝐺 = ⟨𝑉 , 𝐸⟩ 是二部图当且仅当G中无奇数长度的回路

2.3图的矩阵表示

在这里插入图片描述

在这里插入图片描述

  • 1
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值