Python中协程的创建

协程又称为微线程
进程在创建时, 需要耗费时间和资源
线程在创建时, 需要耗费时间和资源
多线程: I/O密集型任务
多进程: 充分利用CPU, 将任务提交给多个CPU去执行,处理计算密集型任务
协程运行过程中始终只有一个线程,协程也称微线程。

协程优势:
  • 有较高的执行效率, 始终只有一个线程, 不存在创建线程和销毁线程需要的时间;
  • 也没有线程切换的开销, 任务需要开启线程数越多, 协程的优势越明显;
  • 不需要多线程的锁机制

一 yield实现协程

import threading
import time
def producer(c):
   c.__next__()
   n=0
   while n<5:
       n+=1
       print('[生产者]生产数据:%s' %(n))
       res=c.send(n)
       print('[消费者]的返回值为:%s' %(res))
def consumer():
   r='a'
   while True:
       #yield r ====> r如何获取?print(c.__next__())
       #n=yield r ==> c.send("任务1")===> n="任务1"
       n=yield r
       if not n:
           return
       print('[消费者]运行%s...' %(n))
       time.sleep(1)
       r='200 Ok'
#函数中有yield,返回值为生成器
if __name__=='__main__':
   print(threading.active_count())
   c=consumer()
   producer(c)
   print(threading.active_count())

在这里插入图片描述
注意到consumer函数是一个生成器,把一个consumer传入produce后:
1.首先调用c.next()启动生成器
2.然后,一旦生产了东西,通过c.send(n)切换到consumer执行;
3.consumer通过yield拿到消息,处理,又通过yield把结果传回;
4.produce拿到consumer处理的结果,继续生产下一条消息;
5.produce决定不生产了,通过c.close()关闭consumer,整个过程结束。
整个流程无锁,由一个线程执行,produce和consumer协作完成任务,所以称为“协程”,而非线程的抢占式多任务

二 gevent实现协程

由于切换是在IO操作时自动完成, 所以gevent需要修改python自带的一些标准库;
gevent提供了patch_*来对于标准库作修改;

import time
from gevent import monkey
import gevent
def job(n):
    for i in range(n):
        print(gevent.getcurrent(),i)
        time.sleep(1)
def main1():
    # 创建三个协程,并让该协程执行job任务
    # 假设多协程执行的任务,没有IO操作或者等待,那么协程间是依次运行,而不是交替运行;
    # 假设多协程执行的任务,IO操作或者等待,那么协程间是交替运行;
    g1=gevent.spawn(job,2)
    g2=gevent.spawn(job,3)
    g3=gevent.spawn(job,2)
    #等待所有的协程执行结束,再执行主程序
    # g1.join()
    # g2.join()
    # g3.join()
    gevent.joinall([g1,g2,g3])
    print('任务执行结束')
main1()

在这里插入图片描述
注意到协程之间是交互执行的,而不是依次执行
另外 from gevent import monkey 是为gevent函数打补丁

三 协程与线程的对比

import time
from urllib.request import urlopen
from concurrent.futures import  ThreadPoolExecutor
import gevent

#1.打补丁
from gevent import  monkey
from mytimeit import timeit
monkey.patch_all()

#2.确定多协程执行的任务内容;
def load_url(url):
    # print("正在处理%s...." %(url))
    with urlopen(url) as conn:
        data = conn.read()
        print("%s网页字节数为%s" %(url, len(data)))

URLS = ['http://httpbin.org', 'http://example.com/']*100

@timeit
def gevent_main():
    gevents = [gevent.spawn(load_url, url) for url in URLS]
    gevent.joinall(gevents)


@timeit
def thread_main():
    with  ThreadPoolExecutor(max_workers=100) as f:
        f.map(load_url, URLS)

if __name__ == '__main__':
    gevent_main()
    thread_main()

线程数量越多,协程的性能优势就越明显

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值