协程又称为微线程
进程在创建时, 需要耗费时间和资源
线程在创建时, 需要耗费时间和资源
多线程: I/O密集型任务
多进程: 充分利用CPU, 将任务提交给多个CPU去执行,处理计算密集型任务
协程运行过程中始终只有一个线程,协程也称微线程。
协程优势:
- 有较高的执行效率, 始终只有一个线程, 不存在创建线程和销毁线程需要的时间;
- 也没有线程切换的开销, 任务需要开启线程数越多, 协程的优势越明显;
- 不需要多线程的锁机制
一 yield实现协程
import threading
import time
def producer(c):
c.__next__()
n=0
while n<5:
n+=1
print('[生产者]生产数据:%s' %(n))
res=c.send(n)
print('[消费者]的返回值为:%s' %(res))
def consumer():
r='a'
while True:
#yield r ====> r如何获取?print(c.__next__())
#n=yield r ==> c.send("任务1")===> n="任务1"
n=yield r
if not n:
return
print('[消费者]运行%s...' %(n))
time.sleep(1)
r='200 Ok'
#函数中有yield,返回值为生成器
if __name__=='__main__':
print(threading.active_count())
c=consumer()
producer(c)
print(threading.active_count())
注意到consumer函数是一个生成器,把一个consumer传入produce后:
1.首先调用c.next()启动生成器
2.然后,一旦生产了东西,通过c.send(n)切换到consumer执行;
3.consumer通过yield拿到消息,处理,又通过yield把结果传回;
4.produce拿到consumer处理的结果,继续生产下一条消息;
5.produce决定不生产了,通过c.close()关闭consumer,整个过程结束。
整个流程无锁,由一个线程执行,produce和consumer协作完成任务,所以称为“协程”,而非线程的抢占式多任务
二 gevent实现协程
由于切换是在IO操作时自动完成, 所以gevent需要修改python自带的一些标准库;
gevent提供了patch_*来对于标准库作修改;
import time
from gevent import monkey
import gevent
def job(n):
for i in range(n):
print(gevent.getcurrent(),i)
time.sleep(1)
def main1():
# 创建三个协程,并让该协程执行job任务
# 假设多协程执行的任务,没有IO操作或者等待,那么协程间是依次运行,而不是交替运行;
# 假设多协程执行的任务,IO操作或者等待,那么协程间是交替运行;
g1=gevent.spawn(job,2)
g2=gevent.spawn(job,3)
g3=gevent.spawn(job,2)
#等待所有的协程执行结束,再执行主程序
# g1.join()
# g2.join()
# g3.join()
gevent.joinall([g1,g2,g3])
print('任务执行结束')
main1()
注意到协程之间是交互执行的,而不是依次执行
另外 from gevent import monkey 是为gevent函数打补丁
三 协程与线程的对比
import time
from urllib.request import urlopen
from concurrent.futures import ThreadPoolExecutor
import gevent
#1.打补丁
from gevent import monkey
from mytimeit import timeit
monkey.patch_all()
#2.确定多协程执行的任务内容;
def load_url(url):
# print("正在处理%s...." %(url))
with urlopen(url) as conn:
data = conn.read()
print("%s网页字节数为%s" %(url, len(data)))
URLS = ['http://httpbin.org', 'http://example.com/']*100
@timeit
def gevent_main():
gevents = [gevent.spawn(load_url, url) for url in URLS]
gevent.joinall(gevents)
@timeit
def thread_main():
with ThreadPoolExecutor(max_workers=100) as f:
f.map(load_url, URLS)
if __name__ == '__main__':
gevent_main()
thread_main()
线程数量越多,协程的性能优势就越明显