- 博客(21)
- 收藏
- 关注
原创 【Nan‘s 吴恩达深度学习笔记】第四课第三周 目标检测
【Nan‘s 吴恩达深度学习笔记】第四课第三周 目标检测3.1 目标定位(object localization)ClassificationObject localizationLoss function特征点检测(Landmark detection)目标检测(Object detection)滑动窗口的卷积实现(Convolutional implementation of sliding windows)Bounding Box 预测交并比(Intersection over union)非极大值抑
2020-12-03 20:50:08 850 1
原创 【Nan‘s 吴恩达深度学习笔记】第四课第一周 卷积神经网络
【Nan‘s 吴恩达深度学习笔记】第四课第一周 卷积神经网络 Convolutional Neural Networks1.1 计算机视觉(Computer vision)边缘检测垂直边缘过滤器选择PaddingValid卷积Same卷积步长(Stride)1.6 三维卷积1.7 单层卷积网络卷积层1.8 简单卷积网络1.9 池化层最大池化(max pooling)平均池化(Average pooling)小结卷积神经网络示例激活值形状卷积Convolution参数共享 Parameter sharing稀
2020-12-01 16:32:51 399
原创 【Nan‘s 吴恩达深度学习笔记】第二课第一周 深度学习的实践层面
【Nan‘s 吴恩达深度学习笔记】第二课第一周 深度学习的实践层面1.1 训练,验证,测试数据集(Train / Dev / Test sets)概念表示常用划分1.2 偏差,方差(Bias/Variance)机器学习基础方法1.4 正则化(Regularization)L2正则化正则化参数λWhy预防过拟合Dropout (随机失活)正则化工作原理实施方法why有效技巧其他正则化方法1.9 归一化输入(Normalizing inputs)1.10 梯度消失/梯度爆炸(Vanishing/Explodin
2020-11-30 16:47:14 562
原创 【Nan‘s 吴恩达深度学习笔记】第四周 深层神经网络
【Nan‘s 吴恩达深度学习笔记】第四周 深层神经网络浅层神经网络(Deep neural networks)小结核对矩阵的维数Why deep训练神经网络参数 vs 超参数( Parameters vs Hyper parameters)浅层神经网络(Deep neural networks)小结前向传播:反向传播:核对矩阵的维数维数:①????的维度是(下一层的维数,前一层的维数),即w[l]:(n[l],n[l−1]);w^{[l]}: (n^{[l]},n^{[l−1]});w[l
2020-11-29 17:14:38 347
原创 【Nan‘s 吴恩达深度学习笔记】第三周 浅层神经网络
【Nan‘s 吴恩达深度学习笔记】第三周 浅层神经网络浅层神经网络(shallow neural networks)3.2 神经网络表示3.3 神经网络输出计算3.4 多样本向量化3.6 激活函数(Activation Function)Why非线性激活函数激活函数的导数神经网络的梯度下降随机初始化浅层神经网络(shallow neural networks)3.2 神经网络表示输入层:输入特征????1、 ????2、 ????3,它们被竖直地堆叠起来;隐藏层:在训练集中看到他们,中间结点的准确
2020-11-29 16:03:19 241
原创 【Nan‘s 吴恩达深度学习笔记】第二周 神经网络&逻辑回归
【Nan‘s 吴恩达深度学习笔记】第一课 神经网络&逻辑回归神经网络(Neural Networks)提示2.1 二分类(Binary Classification)2.2 逻辑回归(Logistic Regression)损失函数(Loss/Error Function)代价函数(Cost Function)梯度下降算法的应用神经网络(Neural Networks)提示对于图像应用,我们经常在神经网络上使用卷积( Convolutional Neural Network),通常缩写为 CN
2020-11-27 22:24:18 284
原创 【王道机试指南学习笔记】第十二章 动态规划
【Nan's 王道机试指南学习笔记】第十二章 动态规划前言与提示12.1 递归求解重点提醒题目练习例题12.1 N阶楼梯上楼问题(浙大复试)11.2 并查集重点提醒题目练习例题11.1 畅通工程(浙大复试)11.3 最小生成树重点提醒题目练习例题10.3 二叉排序树(华科复试)11.4 最短路径重点提醒题目练习例题10.3 二叉排序树(华科复试)前言与提示求解 最优解问题,与分治法类似。不同的是:①适用于动态规划的问题,经分解得到的子问题往往不是互相独立的②分治法的子问题会被重复计算多次,动态规划
2020-11-27 22:11:26 255
原创 【Nan‘s 吴恩达机器学习笔记】第八、九章 神经网络
【Nan's 吴恩达机器学习笔记】第八、九章 神经网络神经网络(Neural Networks)8.1 非线性假设8.2 模型表示前向传播算法(Forward Propagation)8.3 逻辑运算8.4 多元分类9.1 代价函数9.2 反向传播算法(Back propagation)神经网络(Neural Networks)8.1 非线性假设假如我们只选用灰度图片,每个像素pixel则只有一个值,我们可以选取图片上的两个不同位置上的两个像素,然后训练一个逻辑回归算法利用这两个像素的值来判断图片上是
2020-11-25 17:17:45 336 1
原创 【Nan‘s 吴恩达机器学习笔记】第四章 多变量线性回归
【Nan's 吴恩达机器学习笔记】第四章 多变量线性回归多变量线性回归(Multivariable Linear Regression)Notation4.2 多元梯度下降法特征缩放Feature Scaling学习率α Learning rate4.5 多项式回归4.6 正规方程(Normal Equation)4.7 对比多变量线性回归(Multivariable Linear Regression)Notation标记含义n代表特征features的数量x(i)x^{
2020-11-24 20:49:55 162
原创 【Nan‘s 吴恩达机器学习笔记】第三章 线性代数
【Nan's 吴恩达机器学习笔记】第三章 线性代数3.1 矩阵和向量3.2 矩阵&向量的运算加法和标量乘法矩阵向量乘法房价预测的应用矩阵乘法房价预测的应用Ⅱ单位矩阵逆(Inverse)转置(Transpose)3.1 矩阵和向量矩阵(Matrices):大写字母表示矩阵的维数,即行数×列数。AijA_{ij}Aij指第i行,第j列的元素。向量(Vectors):小写字母y表示一种特殊的矩阵,讲义中的向量一般都是列向量,n×1矩阵。1索引(下标)向量为常用的!3.2 矩阵&向
2020-11-24 16:26:58 165
原创 【Nan‘s 吴恩达机器学习笔记】第一、二章 引言&单变量线性回归
【Nan's 吴恩达机器学习笔记】第一、二章 引言&单变量线性回归前言与提示1.3 监督学习重点提醒实例引入预测房价乳腺癌肿瘤判断1.4 无监督学习重点提醒实例引入鸡尾酒会前言与提示不同类型的学习算法。主要的两种类型被我们称之为:监督学习(Supervised learning):我们将教计算机如何去完成任务;无监督学习(Unsupervised learning):我们打算让计算机自己进行学习。其他术语,诸如强化学习(Reinforcement learning)和推荐系统(recomm
2020-11-23 21:09:16 346
原创 【王道机试指南学习笔记】第十一章 图论
【Nan's 王道机试指南学习笔记】第十一章 图论前言与提示11.1 概述重点提醒11.2 并查集重点提醒题目练习例题11.1 畅通工程(浙大复试)11.3 最小生成树重点提醒题目练习例题10.3 二叉排序树(华科复试)11.4 最短路径重点提醒题目练习例题10.3 二叉排序树(华科复试)前言与提示图论有关问题——并查集、最小生成树、最短路径、拓扑排序等。抽象数据的图结构,主要介绍邻接矩阵和邻接表这两种实现方式。11.1 概述重点提醒图是由顶点(Vertex)集合V和边(Edge)集合E组成。常
2020-11-22 21:00:29 570
原创 【王道机试指南学习笔记】第十章 数据结构二
【Nan's 王道机试指南学习笔记】第十章 数据结构二前言与提示10.1 二叉树Binary Tree重点提醒题目练习例题10.1 二叉树遍历(清华复试)例题10.2 二叉树遍历(华科复试)10.2 二叉排序树(二叉搜索树)重点提醒题目练习例题10.3 二叉排序树(华科复试)例题10.4 二叉排序树(华科复试)习题10.1 二叉搜索树(浙大复试)前言与提示数据结构一中介绍的都是线性数据结构,这次介绍一些非线性的——二叉树、二叉排序树、优先队列和散列表。10.1 二叉树Binary Tree重点提醒
2020-09-15 22:02:28 146
原创 【王道机试指南学习笔记】第八章 递归与分治
【Nan's 王道机试指南学习笔记】第八章 递归与分治8.1 递归策略重点提醒递归条件题目练习例题8.1 n的阶乘(清华复试)8.1 递归策略重点提醒递归——函数直接 / 间接调用自身的一种方法。把复杂问题层层转化为与原问题相似但规模较小的问题来求解。少量程序,实现多次计算,大大减少代码量。递归条件1)子问题必须与原始问题相同,且规模更小。2)不能无限制地调用本身,必须有一个递归出口。题目练习例题8.1 n的阶乘(清华复试)牛客网网址:https://www.nowcoder.com/q
2020-09-12 16:47:58 217
原创 【王道机试指南学习笔记】第五章 数据结构一
【Nan's 王道机试指南学习笔记】第五章 数据结构一5.2 队列重点提醒STL-queue基本操作题目练习例题5.2 约瑟夫问题No.25.2 队列重点提醒从搜索的起点开始,不断地优先访问当前结点的邻居队列是一种线性的序列结构,其存放的元素按照线性的逻辑次序排列。与数组/向量相比,队列只限于逻辑两端的操作。“先进先出”规则!STL-queue基本操作题目练习例题5.2 约瑟夫问题No.2约瑟夫问题数据规模不大时,可直接用循环队列模拟。可以把模板队列queue的队首元素弹出后,再压入
2020-09-11 00:26:05 289
原创 【王道机试指南学习笔记】第九章 搜索
【Nan's 王道机试指南学习笔记】第九章 搜索前言与提示9.1 宽度优先搜索BFS重点提醒题目练习例题9.1 Catch That Cow前言与提示搜索是一种有目的地枚举问题的解,发现解空间的某一子集内不存在解时,会放弃对该子集的搜索。9.1 宽度优先搜索BFS重点提醒从搜索的起点开始,不断地优先访问当前结点的邻居,再按照访问邻居结点的先后顺序依次访问它们的邻居,直至搜遍或找到解。常用于搜索最优值的问题。题目练习例题9.1 Catch That Cow题目OJ网址(牛客网):https:
2020-09-10 22:45:50 610 1
原创 【王道机试指南学习笔记】第七章 贪心策略
【Nan's 王道机试指南学习笔记】第六章 数学问题前言与提示6.1 进制转换重点提醒题目练习例题6.1 特殊乘法(清华复试题)习题6.1 skew数(北大复试题)前言与提示不涉及深奥算法和数据结构,只与数理逻辑有关。6.1 进制转换重点提醒字符串处理常作为简单题目出现,考察输入/输出格式、思维逻辑,往往涉及边界等问题,要小心对待!题目练习例题6.1 特殊乘法(清华复试题)题目OJ网址(牛客网):https://www.nowcoder.com/questionTerminal/a5ede
2020-07-31 16:54:02 330
原创 【王道机试指南学习笔记】第四章 字符串
【Nan's 王道机试指南学习笔记】第四章 字符串前言与提示4.1 字符串重点提醒基本操作1) 字符串定义&初始化2) 字符串长度3) string元素访问4) string元素操作5) string运算符6) string常用函数4.2 字符串处理重点提醒题目练习例题3.4 找x(哈工大复试题)例题3.5 查找(北邮复试题)习题3.5 找最小数(北邮复试题)习题3.6 打印极值点下标(北大复试题)习题3.7 找位置(华科复试题)前言与提示字符串处理及字符串匹配 是很基础的内容!这里同样放几篇
2020-07-28 18:07:02 934 1
原创 【王道机试指南学习笔记】第三章 排序与查找
【Nan's 王道机试指南学习笔记】第三章 排序与查找前言与提示3.1 排序重点提醒题目练习例题3.1 排序(华科复试题)前言与提示排序与查找 是最经典的问题,各类的排序和查找方法需要了解!这里放几篇写得很好的博文,供自己学习参考:https://blog.csdn.net/qq_20386411/article/details/83070101排序:https://www.cnblogs.com/wujingqiao/articles/8961890.html3.1 排序重点提醒短时间写出
2020-07-20 13:32:57 499
原创 【王道机试指南学习笔记】第二章 暴力求解
【Nan's 王道机试指南学习笔记】第二章 暴力求解2.1 枚举重要思路例题1 abc(清华复试题)例题2 反序数(清华复试题)例题3 对称平方数1(清华复试题)习题2.1 与7无关的数(北大复试题)习题2.2 百鸡问题(哈工大复试题)习题2.3 Old Bill(上交复试题)2.1 枚举重要思路算法思路:利用计算机运算速度快的特点,对问题的所有可能答案一一列举,并逐一检验,符合条件的保留,不符合的丢弃。枚举法问题 首先要考虑运算次数例题1:枚举量=10x10x10=1000 √可接受例题2:枚
2020-07-13 16:10:26 1276
原创 【Nan‘s POJ】1001 Exponentiation 高精度算法
【Nan’s POJ】1001 Exponentiation 高精度算法高精度算法相关找到一篇入门的博文,感觉写的很详细了,在此转载一下:https://blog.csdn.net/zsjzliziyang/article/details/82050337本题思路主要就是高精度计算的基本思路,实现高精度乘法,用 long long什么的是无法实现的。Mark几个重点:①对于很大的数,可先用一个字符串输入。再利用字符串函数等操作将每一位数取出,存入一个整型或short数组里,数组的每一位表示这个
2020-07-07 20:59:31 142
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人