最优化方法-黄金分割法及Matlab实现

黄金分割法及Matlab实现

基本思想

黄金分割法也称为 0.618 法,其基本思想是通过取试探点和进行函数值比较,使包含极小点的搜索区间不断缩短以逼近极小值点。适用于确定区间上的任何单谷函数求极小值的问题

公式推导

设有定义在 [ a , b ] [a,b] [a,b]上的单谷函数 φ ( α ) = f ( x k + α d k ) \varphi \left( \alpha \right) =f\left( x_k+\alpha d_k \right) φ(α)=f(xk+αdk) [ a , b ] [a,b] [a,b]上取两个试探点 x 1 x_1 x1 x 2 x_2 x2,且 x 1 < x 2 x_1<x_2 x1<x2。计算 φ ( x 1 ) \varphi \left( x_1\right) φ(x1) φ ( x 2 ) \varphi \left( x_2\right) φ(x2),可能会出现以下两种情形:

  1. φ ( x 1 ) ⩽ φ ( x 2 ) \varphi \left( x_1\right) \leqslant \varphi \left( x_2\right) φ(x
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值