自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(87)
  • 收藏
  • 关注

原创 Window下关于robocopy命令的讲解以及和Copy命令的区别

文章摘要: robocopy和copy是Windows下的文件复制命令,但适用场景不同。copy简单但功能有限,仅适合本地小文件复制,网络或大文件易失败。robocopy专为复杂场景设计,支持断点续传(/Z)、失败重试(/R、/W)、递归目录及日志控制(/NFL等),尤其适合公盘共享、大文件或自动化脚本。示例命令robocopy "." "${public_Path}" "%%F" /Z /R:10 /W:5 /NFL /NDL /NP优化了网络稳

2026-01-07 11:05:54 602

原创 FastAPI后端和VUE前端的数据交互原理详解

这篇文章深入浅出地讲解了前后端交互中的CORS机制。主要内容包括: CORS的作用是允许浏览器发起跨域请求,而非直接实现前后端交互 详细解析了Vue和FastAPI的实际交互流程:Vue通过HTTP请求调用FastAPI API 揭示了浏览器在跨域请求中的关键角色和安全检查机制 对比了开发环境(需要CORS)和生产环境(通常不需要CORS)的区别 提供了正确配置CORS的建议,并指出不安全做法 核心认知:CORS是浏览器的安全策略,而非前后端通信的直接机制,前后端本质是通过HTTP协议进行数据交互。

2025-12-15 16:09:37 574

原创 Node.js工具安装VUE3开发以及创建VUE工程项目实战

本文介绍了如何从零开始搭建Vue3项目并实现与FastAPI后端的交互。主要内容包括:Node.js和Vue CLI的安装步骤、Vue3项目创建流程、关键目录结构说明、表单组件的开发实现、Axios接口封装以及CORS跨域配置。重点讲解了StatForm.vue组件的双向数据绑定和表单提交功能,以及如何通过api.js文件与后端API通信。最后提供了完整的项目运行步骤,使开发者能够快速搭建一个具备前后端交互功能的统计记录管理系统。

2025-12-15 14:16:02 1131

原创 关于git子仓问题之 git checkout * error: pathspec ‘test‘ did not match any file(s) known to git

Jenkins 子模块 CI 场景下推荐用✅ 避免分支已存在报错✅ 保证子模块总是指向远端最新 commit。

2025-12-12 14:35:29 686

原创 基于pgAdmin4 Web UI界面实现连接docker 版PostgreSQL实现增删改查操作

按你 docker-compose 的名字填写。右键你的 demo 数据库 → Query Tool。随时带你继续做下一步!

2025-12-11 16:29:00 666

原创 PostgreSQL数据库docker版本安装以及简单使用和docker-compose.yml启动服务详细介绍

(含 pgAdmin & Adminer)、如何允许其他 Linux/Windows 机器访问、以及在 pgAdmin(网页 UI)中做增删改查的示例操作。常用 SQL 同上(CREATE / INSERT / SELECT / UPDATE / DELETE)。,有时需要重启或在首次 init 时放置配置,或者进入容器手动替换并重启 Postgres 进程。在 pgAdmin 的 UI 下,执行后会在下方显示结果或影响的行数。中的 SQL(若存在)并创建用户/数据库。(若你已经有 Docker,可跳过)

2025-12-11 11:14:42 1116

原创 基于python的FastAPI框架目录结构介绍、开发思路和标准开发模板总结

本文提供了一个专业级的FastAPI项目目录结构模板,适合大中型Web平台开发。该模板采用模块化设计,包含API路由层、核心配置、ORM模型、业务逻辑层、数据库访问层等完整组件,支持RBAC、JWT、任务队列等功能扩展。主要特点包括:按功能模块拆分的API路由(v1/v2版本支持)、清晰的业务逻辑与服务层分离、完善的数据库管理(Alembic迁移)、中间件支持和测试目录。文章还推荐了几个活跃维护的开源FastAPI模板仓库,如官方全栈模板和多个企业级后端模板,开发者可直接克隆使用。该结构遵循单一职责原则,适

2025-12-10 16:44:54 999

原创 Python的FastAPI,Flask,Django Web框架的区别

场景推荐框架 + 数据库内网小工具 / 原型 / 自动化脚本Flask + SQLite 或 PostgreSQL企业后台 / 大型 Web 系统高并发 API / 前后端分离 / 数据平台微软生态 / Windows 后端已有 Oracle 企业系统。

2025-12-09 17:40:10 667

原创 FastAPI+ PostgreSQL+ VUE 实现一个数据平台展示案例

本文介绍了一个基于FastAPI+PostgreSQL+Vue3的工程级数据展示平台解决方案。文章从整体架构入手,采用前后端分离设计,后端使用FastAPI提供REST API,前端通过Vue3+Element Plus实现数据展示。详细说明了项目目录结构、PostgreSQL的Docker部署方式、后端FastAPI的核心代码实现(包括数据库模型、路由配置和主入口),以及前端Vue项目的创建和组件开发示例(数据表格和ECharts图表)。该方案强调工程实践,涵盖了从开发到部署(Docker)的全流程,适合

2025-12-09 16:44:33 507

原创 使用python的pywin32库实现CANape工程自动化案例

摘要 本教程介绍使用Python控制CANape进行自动化数据采集与MF4文件分析的方法。主要内容包括: 环境配置:需Windows系统、CANape软件、Python 3.8+及相关库(pywin32、asammdf等) 核心功能: 通过COM接口控制CANape 实现基础数据采集、条件触发录制、定时批量采集等功能 支持批量标定参数写入与验证 提供MF4文件离线分析方案 典型应用案例: 基础数据采集与保存 基于信号阈值的触发录制 定时批量数据采集 批量标定参数验证 技术实现: 使用win32com操作CA

2025-11-24 15:28:47 1072

原创 CANape工具原理和功能详细介绍一下重要组件的作用,以及DBC和A2L和CANape的关系

CANape(由 Vector 提供)是一个用于 ECU 测量(Measurement)、标定/校准(Calibration)、诊断、总线分析与数据记录的工程工具。核心用途是:在整车/控制器开发与调试周期内,把 ECU 内部变量(测量值、标定参数)映射到易读的信号/参数名上,实时观测与修改(标定),并记录为工程格式(如 MF4)以便分析。CANape 是一个面向工程化的 ECU 测量与标定平台,桥接“网络报文(DBC)”与“ECU 内部变量(A2L)”。

2025-11-24 10:40:12 191

原创 Python的AI大模型之runwayml/stable-diffusion-v1-5介绍与使用

场景能力AI 绘画生成强角色卡风格训练强(LoRA)产品设计草图生成强二次元插画强写实风格中等(SDXL 更强)翻译/文本理解❌(不能翻译)视频生成❌(不是视频模型)✔ AI 绘画模型(不是翻译模型)✔ 稳定、经典、最流行的基础模型✔ 由 Stability AI + RunwayML 联合开发✔ 支持文生图、图生图、修图、扩图✔ 可使用 diffusers 库轻松用 Python 调用。

2025-11-17 17:31:45 1145

原创 python的AI大模型之facebook/nllb-200-distilled-600M的介绍和使用

本文详细介绍了Meta开发的NLLB-200轻量版多语言翻译模型facebook/nllb-200-distilled-600M。该模型具有6亿参数,支持200多种语言翻译,采用Apache 2.0许可证开源并允许商用。文章分析了模型特点(蒸馏版体积小、速度快)、应用场景(网站翻译、聊天机器人等)及Python使用方法,包括安装步骤和代码示例(单文本翻译和批量文件处理)。关键信息包括:模型类型为多语言神经机器翻译,主要面向资源有限场景,使用需注意特定语言代码格式(如中文简体为cmn_Hans)。通过Hugg

2025-11-17 14:39:10 1193

原创 git仓库中的.git目录 , .gitattributes、.gitignore、.gitmodules、.modules文件作用与讲解

Git 核心元文件解析 .git/目录是Git版本库的核心,存储所有提交历史、对象数据、分支信息和配置。.gitignore定义工作区忽略规则,.gitattributes控制文件属性和Git行为,.gitmodules记录子模块配置。.modules则是非标准文件,多为旧版系统或CI工具使用。 关键点: .git/包含objects(数据存储)、refs(分支标签)、HEAD等关键组件 忽略规则可分层级(全局/本地/仓库) 属性文件控制行尾、diff策略等细节 子模块配置同步需注意提交.gitmodule

2025-11-13 18:11:53 1042

原创 Git 命令之子模块(Git Submodule)由浅入深的全面详解(面向有经验者)

文档化子模块策略(谁负责更新子模块、何时更新、是否追踪分支)。CI checkout 模板避免把未推送的子模块提交到父仓库(会造成他人无法拉取)。为子模块设置受保护的分支或发布标签,并在父仓库通过 tag/pinned commit 引用,保证可重现性(build reproducibility)。尽量在 PR 模板中提醒:如果改动子模块,务必同时在子仓库创建 PR 并把子模块更新的 commit push 到远端。权限管理。

2025-11-13 17:58:21 1041

原创 Git 命令 作用、常用选项、示例、何时使用与注意事项指南

本文全面介绍了Git的常用和重要高级命令,涵盖基础概念到高级操作。内容分为12个部分:基础知识(工作区、暂存区、仓库)、配置管理、仓库初始化、文件状态与差异、提交与日志、撤销恢复、分支管理、远程协作、标签管理、暂存操作、子模块和Git LFS。重点包括提交管理、分支操作(merge/rebase)、远程同步(pull/push)以及版本回退(reset/revert)等核心功能。文章特别强调了危险操作(如hard reset和force push)的注意事项,并提供了实用技巧(如交互式add、日志查看等)。

2025-11-13 17:48:45 907

原创 Python第三方库之PySide6 学习路线+示例代码合集(从入门到多线程)以及项目运用

PySide6 GUI开发学习路径 摘要:本文提供PySide6从入门到实战的系统学习路线,包含5个阶段:1)基础入门(创建窗口/布局管理),2)信号槽机制与交互式UI,3)Qt Designer可视化设计,4)多线程与后台任务处理,5)综合项目实战。每个阶段配有典型代码示例,如Hello World窗口、信号槽交互、QThread多线程实现等,最后指导如何打包为可执行文件。学习重点包括:事件循环机制、布局管理、线程安全更新UI、项目工程化等核心技能,适合想系统掌握Qt for Python的开发者。

2025-11-11 11:32:03 1072

原创 Python第三方库之PySide6的原理和基础用法学习

PySide6简明指南 PySide6是Qt 6的官方Python绑定,允许用Python开发跨平台GUI应用。其核心包括5大模块: QtWidgets:提供UI组件(窗口/按钮等) QtCore:信号槽/线程/文件系统 QtGui:图形处理 QtNetwork:网络通信 扩展模块(图表/QML等) 程序基本结构: 创建QApplication 构建UI控件 启动事件循环 关键特性: 信号槽机制实现组件通信 布局管理器自动调整控件 丰富对话框和输入控件 学习路线: 入门→布局/信号槽→设计器→多线程→QML

2025-11-11 11:12:15 1381

原创 .c .o .a .elf .a2l hex map 这些后缀文件的互相之间的联系和作用

a文件是多个目标文件(.o)的“打包集合”。由ar(archive)工具生成。在编译链接时提供函数和全局变量的实现。math.ostring.oio.olibmylib.a.a文件是一个静态链接库它打包了多个.o目标文件,用于生成.elf可执行文件。.a是代码实现的二进制容器,而.a2l是 ECU 信号描述的文本文件,完全不同类型。下面给你一份逐步、可复制执行的详尽指南,覆盖从源码到目标文件再到静态库、ELF、MAP、HEX、以及 A2L 的关系、用途和每一步的具体命令。

2025-11-07 19:35:31 1095

原创 使用nm和ASAP2 工具在elf文件搜索变量的区别

工具能否看到条件nm✅ 所有符号ELF 符号表存在ASAP2 Set✅ 仅标定信号必须在特定 section 且非 static/constobjdump✅ 显示段用于验证归属 sectionreadelf -S✅ 段定义用于检查 ELF 中存在的标定段。

2025-11-07 10:40:53 950

原创 A2l中没有一些第三方库的内部信号, 是第三方库代码问题吗 还是MT工具的问题

检查点工具/方法结论方向是否在 MAP 文件中出现打开.map文件搜索信号名没有 → 第三方库问题是否在 ELF 符号表中出现或nm xxx.elf没有 → 编译器/库未导出在 ELF 有,但 A2L 没有查看 A2L 模板或 MT 配置MT 工具过滤问题信号在运行时生成检查第三方库类型运行时库设计问题如果 MAP/ELF 里没有这些内部信号 → 是第三方库未导出或被优化掉的问题。如果 MAP/ELF 有,但 A2L 没生成 → 是A2L 生成工具配置或模板的问题。

2025-11-05 13:30:16 928

原创 对于ECU 构建流程中编译elf,hex等文件后,以及生成MT工具(CANape,A2L)等基础知识讲解

ELF 是 ECU 构建流程的中心文件。HEX / BIN:用于刷写MAP / SYM:用于地址解析A2L:用于标定与测量LST / DBG:用于调试和反汇编CRC / LOG:用于版本验证与追踪。

2025-11-04 14:23:37 661

原创 C语言基础知识点简单案例分享之二——C语言全知识点速查宝典

C语言核心知识点速查宝典(摘要版) 🔹 程序结构:main()入口,#include头文件,printf()输出 🔹 数据类型:整型/浮点/字符变量,const常量,强制类型转换 🔹 运算符:算术/逻辑/位运算,三目运算符?: 🔹 控制结构:if/switch条件,for/while循环,break/continue 🔹 函数:值传递,递归调用,需提前声明 🔹 数组字符串:零基索引,字符串以\0结尾,strlen()等函数 🔹 指针:&取地址,*解引用,指针运算,数组指针等价 🔹 动

2025-11-03 14:01:30 1218

原创 C语言基础知识点简单案例分享之一——初学者

本文系统整理了C语言知识体系,从基础到高级特性全覆盖,包含150+代码示例。主要内容分为16个模块:1)基础语法与数据类型;2)运算符;3)控制结构;4)函数;5)数组与字符串;6)指针与内存;7)结构体与共用体;8)枚举与typedef;9)文件操作;10)预处理与宏;11)指针进阶;12)内存模型;13)标准库;14)工程级主题(内存泄漏、编译链接等);15)C99/C11新特性;16)综合案例。每个知识点均配有概念解释和典型代码示例,形成完整的学习路径,适用于大学课程和工程实战需求。

2025-11-03 13:59:10 859

原创 CMake / make 编译时“用到的内存”到底是什么,以及它和服务器物理内存之间的关系。

文章摘要: CMake/make编译时占用的内存主要来自make阶段,特别是并行编译时多个编译器进程(gcc/g++)的内存消耗总和。关键点包括: CMake只生成构建规则,几乎不占内存;实际内存消耗发生在make执行的编译/链接阶段 每个编译进程会消耗300MB-2GB内存(取决于项目复杂度) 总内存需求=单任务内存×并行数+链接阶段峰值,超过物理内存会导致swap或OOM 提供了Python脚本自动计算最优并行度,根据系统内存和CPU核心数推荐make -j参数 建议通过减少并行度、分阶段编译、使用cc

2025-11-03 10:25:30 1046

原创 AI PyTorch框架之CUDA语义

是 NVIDIA 提供的一套GPU 并行计算架构,让 GPU 不止能画图,还能执行通用计算(GPGPU)。换句话说:CUDA = 一种让你用 C/C++/Python 来控制 GPU 并行计算的编程模型。CPU (Host)│├──> torch.tensor(...) # 在CPU上创建│├──> .to("cuda") # 复制到GPU显存│└──> [Kernel Launch → GPU] # 异步执行计算│├── Stream (执行流)

2025-10-24 15:02:38 847

原创 Jenkins上实现CI集成软件信息Teams群通知案例实现。

摘要:本文介绍如何构建一个基于Jenkins的自动化CI/CD闭环系统,实现从代码编译(CI)、测试(CT)到部署(CD)的全流程自动化,并通过Microsoft Teams实时推送通知。系统采用四阶段Pipeline架构:1)CI阶段执行静态分析和单元测试;2)CT阶段运行自动化测试;3)CD阶段部署到测试/生产环境;4)通过Teams Webhook或Graph API发送富文本通知。文章详细说明了各阶段实现代码,并对比了多种Teams集成方案的优缺点,推荐使用Graph API方式实现更安全、灵活的通

2025-10-24 14:18:04 1148

原创 AI PyTorch框架中自动求导机制原理的形象比喻

PyTorch 元素打比方Tensor一张正在被编辑的照片FunctionPhotoshop 的滤镜(操作)计算图(DAG)历史记录面板是否保存这步操作backward()从最后一步往回看每步对结果的影响grad每个像素(参数)该怎么改才能变更好no_grad()只看效果,不记录历史in-place擦掉历史记录,导致无法撤销阶段类比解释前向传播开账:记录每一步买卖每个算子都写入“我用谁、我产生谁”反向传播复账:计算每笔交易对利润的影响。

2025-10-22 17:58:46 1099

原创 对AI PyTorch框架中自动求导机制原理和案例详细讲解

摘要:PyTorch的Autograd在运行时动态构建计算图,通过反向模式自动微分(VJP)高效计算梯度。核心机制包括grad_fn记录操作、saved_tensors保存中间值、版本计数保护等。新引入的torch.func(原functorch)整合了函数变换(如grad、vmap),支持高阶导数和向量化计算,如按样本梯度。示例展示了传统.backward()与torch.func.grad结合vmap的用法,后者能高效计算批数据中每个样本的独立梯度。工程实践中需注意显存优化(如禁用推理时Autograd

2025-10-22 17:49:03 813

原创 基于python的huggingface_hub库实现通用下载大模型存放到本地的通用脚本学习案例

本文介绍了一个通用的Python脚本,用于从Hugging Face下载开源大模型。该脚本提供两种下载方式: 单个模型下载:通过输入模型名称(如"meta-llama/Llama-3-8b")自动下载到本地指定目录,支持断点续传和并行下载。 批量下载功能:可以从列表或文本文件读取多个模型名称,自动逐个下载并显示进度,支持错误处理和独立保存目录。 脚本使用huggingface_hub库的snapshot_download方法,自动处理模型缓存、分片文件等问题。还提供了访问令牌设置、下载分

2025-10-20 16:41:25 802

原创 基于Python实现CANoe和UDE交互通信工具实现,CAPL脚本通过python交互工具与UDE进行通信和调用UDE的组件获取UDE返回值。

本文档详细介绍了PC上位机(UDE)与下位机(CANoe)的数据交互工具设计方案。该工具通过Python中间层实现CANoe与UDE的实时通信,解决了CAPL脚本无法直接与UDE交互的问题。文档包含需求说明、开发环境、系统变量定义、交互流程等技术细节,并提供了CAPL实例代码。相比旧方案的文件传递方式,新方案采用系统变量交互,显著提升了实时性和可靠性。使用说明部分详细介绍了启动顺序和初始化示例,便于开发测试人员快速上手。该工具实现了变量读写、程序控制、连接管理等核心功能,为自动化测试提供了可靠的技术支持。

2025-10-20 16:17:22 1048

原创 python通过win32com库调用UDE工具来做开发调试实现自动化源码,以及UDE的知识点介绍

🔹UDE 是车载 ECU 开发中最常用的调试与 Trace 工具之一🔹 支持多核 MCU,能看寄存器、断点、变量、运行轨迹、调度行为,🔹 还能与 INCA / CANape 协作测量标定,🔹 并可通过 Python 自动化集成进 Jenkins 测试流程。

2025-10-17 17:21:44 1177

原创 关于UDE、CANape、CANoe,车载开发三件套的区别以及侧重点讲解

工具一句话理解UDE看 ECU 的“大脑”——调试芯片内部代码CANape看 ECU 的“内脏”——实时测量和调整参数CANoe看 ECU 的“外部世界”——仿真、诊断、测试网络通信。

2025-10-17 16:55:27 1109

原创 AI PyTorch框架重要知识点:帮你理清CPU、GPU 、 CUDA、三者的关系

✅CPU是通用计算核心,✅GPU是图形处理核心,✅CUDA是 NVIDIA GPU 的“编程接口”和“计算平台”。CPU 控制全局逻辑;GPU 负责高并行计算;CUDA 是 CPU 调用 GPU 的“语言”和“接口”。

2025-10-16 10:59:20 657

原创 AI PyTorch框架基础学习路线和思维导图

下面我会给你一个 **系统化的 PyTorch 知识全景图(从基础到内核原理)**,分为八大模块,每个模块包含核心知识点 + 理解重点 + 建议学习顺序。你掌握这套体系,就能真正理解 PyTorch 的底层逻辑和执行原理。

2025-10-15 11:27:53 834

原创 PyTorch的AI框架小白入门的学习点

PyTorch 核心概念详解 1. 张量(Tensor) 本质:多维数组,PyTorch的基础数据结构 维度分类: 0维:标量(单个数字) 1维:向量(数字列表) 2维:矩阵 3维及以上:高阶张量(如图像数据) 特性: 支持数学运算(加减乘除、矩阵乘法等) 可记录梯度(用于自动求导) 支持GPU加速计算 2. 均方误差损失(MSE Loss) 公式:$\text{MSE} = \frac{1}{n}\sum_{i=1}^n(y_i - \hat{y}_i)^2$ 特点: 衡量预测值与真实值差异的平方均值

2025-10-10 15:09:58 865

原创 PyTorch 框架之torch.float32用法

确实是导入。

2025-09-28 10:55:14 250

原创 Jenkins Pipeline 的 `sh` 步骤里使用 ‘‘‘ ... ‘‘‘和 “““ ... “““ 的区别,一篇文章搞定

'''→ 原样多行,不解析变量 → 安全、适合固定 shell 脚本。"""→ 原样多行,但会解析${...}→ 可在 shell 里直接使用 Groovy/Jenkins 变量。如果你想把改成,就必须用""",否则'''里不会被替换。我可以帮你写一段通用模板,根据自动清理非 git 仓库目录,直接可用在 Jenkins Pipeline。你希望我帮你写吗?

2025-09-25 13:41:39 316

原创 Jenkins Pipeline中关于“\”的转义字符

Groovy 字符串"\\\\"→\\\\→Python 最终接收:所以必须多写一层\\,才能保证最后是\\。${folderPath要不要我画一张流程图,把\\在 Groovy → CMD → Python 的变化过程直观展示?

2025-09-24 17:35:54 391

原创 Helix QAC的工作原理

Helix QAC(以前叫,现在归属)本质上是一个,专门用于代码质量和合规性检查。它和“编译器 + 静态分析器”的机制有点像,但比编译器更严格。下面我给你详细拆解一下。

2025-09-22 16:43:18 1020

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除