机器学习,深度学习
「已注销」
这个作者很懒,什么都没留下…
展开
-
概率密度函数
1.概率密度函数2.概率密度函数的推导假设误差服从正太分布,符合中心极限定理,那么样本误差服从互相独立的假设。 所以3.对数似然函数推导出MSE损失函数 当J(θ)取最小时,可使总似然得到最大。即得到新的目标函数J(θ)。 最小二乘法形式...原创 2022-03-17 00:48:32 · 948 阅读 · 0 评论 -
机器学习——线性回归
1.线性回归是机器学习中有监督机器学习下的一种算法。 回归问题主要关注确定一个唯一的因变量(需要预测的值)和一个或多个数值型的自变量(预测bi)原创 2022-03-16 22:32:57 · 1526 阅读 · 0 评论 -
雅可比矩阵,Hessian矩阵
1.雅可比矩阵由一阶偏导数构成的矩阵,发明它的目的主要是为了简化求导公式。 假设有这样一个函数可以把n维的向量x映射为k维的向量y。,其中每个和每个都是相关的,也就是每个是单独从映射过来的函数,它的雅可比矩阵就是每个分别对每个求偏导,然后构成的矩阵是雅可比矩阵,第一行就是对到求偏导,第二行到第k行依次类推。 2.Hessian矩阵 它是对于一个多元函数来说的,相当于一元函数的二阶导数,Hessian矩阵是一个对称矩阵。Hessian矩...原创 2022-03-16 22:30:39 · 2314 阅读 · 0 评论