《数据管理能力成熟度评估模型》(2018年发布)
数据治理能力成熟度评估是依据国家标准GB/T 36073-2018《数据管理能力成熟度评估模型》,对公司数据治理能力关键领域进行综合评估的过程。评估的结果显示公司在数据治理能力成熟度方面所处的阶段,可以根据该阶段及下一阶段的特征有效地识别改进方向,为数据治理体系蓝图和实施路径规划提供依据。
数据管理能力:组织和机构对数据进行管理和应用的能力
数据管理能力成熟度评估模型【DCMM】:用于对组织的数据管理能力成熟度进行评估的模型
能力域、能力项
DCMM包含8个数据管理能力域,每个能力域包含若干数据管理领域的能力项
能力域 | 能力项 |
---|---|
数据战略 | 数据战略规划 |
数据战略实施 | |
数据战略评估 | |
数据治理 | 数据治理组织 |
数据治理建设 | |
数据治理沟通 | |
数据架构 | 数据模型 |
数据分布 | |
数据集成与共享 | |
元数据管理 | |
数据应用 | 数据分析 |
数据开放共享 | |
数据服务 | |
数据安全 | 数据安全策略 |
数据安全管理 | |
数据安全审计 | |
数据质量 | 数据质量需求 |
数据质量检查 | |
数据质量分析 | |
数据质量提升 | |
数据标准 | 指标数据 |
参考数据和主数据 | |
数据元 | |
业务术语 | |
数据生存周期 | 数据需求 |
数据设计和开发 | |
数据运维 | |
数据退役 |
每个能力项分别有概述、过程目标、能力等级标准,通过调研给每一能力项定级评分,使用雷达图描述每一能力域的评分情况,可以对应成熟度评估等级得出公司数据治理现状。
本次数据治理能力成熟度评估从数据质量和数据标准两个维度展开,每一个一级维度下根据各领域涉及工作内容的不同设计了多个二级子维度,每一个二级子维度都包含若干个指标。二级子维度评分采用5分制,对应初始级为[1,2)分,受管理级为[2,3)分,稳健级为[3,4)分,量化管理级为[4,5)分,优化级为5分,评分最低为1分,最高为5分。对不同维度的指标进行评分后,根据设定的指标权重,通过指标的加权平均算法,得出最终的评分,公式如下:
成熟度评估等级
- 初始级:数据需求的管理主要是在项目级体现,没有统一的管理流程,主要是被动式管理
- 受管理级:组织已意识到数据是资产,根据管理策略的要求制定了管理流程,制定了相关人员进行初步管理
- 稳健级:数据已被当做实现组织绩效目标的重要资产,在组织层面制定了系列的标准化管理流程,促进数据管理的规范化
- 量化管理级:数据被认为是获取竞争优势的重要资源,数据管理的效率能量化分析和监控
- 优化级:数据被认为是组织生存和发展的基础,相关管理流程能实时优化,能在行业内进行最佳实践分享