TensorFlow与深度学习——张量排序
一、 tf.sort / argsort
tf中内置sort和argsort函数,sort用于排序升序,argsort返回排序之后各个元素所在的位置信息,默认也是升序排序。下边是代码:
##列表排序
a= tf.random.shuffle(tf.range(5)) ##[0 2 3 4 1]
b = tf.sort(a,direction='DESCENDING')
#print(b)# tf.Tensor([4 3 2 1 0], shape=(5,), dtype=int32)
c= tf.argsort(a,direction='DESCENDING')
print(c)##tf.Tensor([2 1 3 0 4], shape=(5,), dtype=int32)
##矩阵排序
a= tf.random.uniform([3,3],maxval=10,dtype=tf.int32)
print(a)
"""
[[3 2 5]
[0 3 6]
[6 8 4]]
"""
tf.sort(a,direction='DESCENDING')
print(a)
"""
tf.Tensor([[2 8 5]
[4 3 3]
[0 3 0]], shape=(3, 3), dtype=int32)
"""
indx = tf.argsort(a,direction="DESCENDING")
print(indx)
"""
tf.Tensor(
[[1 2 0]
[0 1 2]
[1 0 2]], shape=(3, 3), dtype=int32)
"""
二、tf.gather
tf.gather(params,indices,validate_indices=None,name=None,axis=0)
params:被索引的张量
indices:一维索引张量
name:返回张量名称
a= tf.random.shuffle(tf.range(5))
#print(a)#[0 2 3 4 1]a= tf.random.shuffle(tf.range(5))
indx= tf.argsort(a,direction='DESCENDING')
list = tf.gather(a,indx)
print(list)
### tf.Tensor([4 3 2 1 0], shape=(5,), dtype=int32)
三、Top_k
top_k 的作用是输出前k个的最大的值或元素的位置
a= tf.random.uniform([3,3],maxval=10,dtype=tf.int32)
print(a)
"""
tf.Tensor(
[[0 5 9]
[8 1 1]
[7 3 9]], shape=(3, 3), dtype=int32)
"""
res = tf.math.top_k(a,2)##a中每行 前两个最大的...
print(res.values)## 取values
"""
array([[2, 1],
[0, 1],
[2, 0]])>)
"""