TensorFlow与深度学习——张量排序

TensorFlow与深度学习——张量排序

一、 tf.sort / argsort
tf中内置sort和argsort函数,sort用于排序升序,argsort返回排序之后各个元素所在的位置信息,默认也是升序排序。下边是代码:

##列表排序
a= tf.random.shuffle(tf.range(5)) ##[0 2 3 4 1]
b = tf.sort(a,direction='DESCENDING')
#print(b)# tf.Tensor([4 3 2 1 0], shape=(5,), dtype=int32)
c=  tf.argsort(a,direction='DESCENDING')
print(c)##tf.Tensor([2 1 3 0 4], shape=(5,), dtype=int32)

##矩阵排序
a= tf.random.uniform([3,3],maxval=10,dtype=tf.int32)
print(a)
"""
[[3 2 5]
 [0 3 6]
 [6 8 4]]
"""
tf.sort(a,direction='DESCENDING')
print(a)
"""
tf.Tensor([[2 8 5]
 [4 3 3]
 [0 3 0]], shape=(3, 3), dtype=int32)
"""

indx = tf.argsort(a,direction="DESCENDING")
print(indx)
"""
tf.Tensor(
[[1 2 0]
 [0 1 2]
 [1 0 2]], shape=(3, 3), dtype=int32)
"""

二、tf.gather
tf.gather(params,indices,validate_indices=None,name=None,axis=0)
params:被索引的张量
indices:一维索引张量
name:返回张量名称

a= tf.random.shuffle(tf.range(5))
#print(a)#[0 2 3 4 1]a= tf.random.shuffle(tf.range(5))
indx=  tf.argsort(a,direction='DESCENDING')
list = tf.gather(a,indx)
print(list)
### tf.Tensor([4 3 2 1 0], shape=(5,), dtype=int32)


三、Top_k
top_k 的作用是输出前k个的最大的值或元素的位置

a= tf.random.uniform([3,3],maxval=10,dtype=tf.int32)
print(a)
"""
tf.Tensor(
[[0 5 9]
 [8 1 1]
 [7 3 9]], shape=(3, 3), dtype=int32)

"""
res = tf.math.top_k(a,2)##a中每行 前两个最大的...
print(res.values)## 取values
"""
array([[2, 1],
       [0, 1],
       [2, 0]])>)
 """
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值