题目
长江俱乐部在长江设置了n个游艇出租站1,2,…n,游客可在这些游艇出租站租用游艇,并在下游的任何一个游艇出租站归还游艇。游艇出租站i到游艇出租站j之间的租金为r(i,j),
设计一个算法,计算出从出租站1到出租站n所需要的最少租金。
测试用例:
3(站数)
5 15(第一站到其他相应各站的租金)
7(第二站到其他相应各站的租金)
输出: 12
分析
动态规划:
定义f[i][j]为站点i到站点j的最少租金:
f[i][j] = min { f[i][k] + f[k][j] }
其中 i<k<j, 0<=i,j<=n-1
则最少租金为 f[0][n-1]
#include <stdio.h>
#include <stdlib.h>
#define n 3//站点数
int main(){
int **a,i,j,k,p;//用数组表示从出租站i到j所用最少费用。
//初始化二维数组
a=new int *[n+1];
for(i=1;i<=n;i++)
a[i]=new int[n+1];
for(i=1;i<=n;i++)
a[i][i]=0;
//输入费用到数组
for(i=1;i<n;i++){
for(j=i+1;j<=n;j++){
printf("请输入从%d到%d费用:",i,j);
scanf("%d",&a[i][j]);
}
}
for(i=2; i<=n; i++){
for(j=i+1; j<=n; j++){
k=j-i;
for(p=k;p<j;p++)
if(a[k][p]+a[p][j]<a[k][j])//取最小
a[k][j]=a[k][p]+a[p][j];
}
}
printf("最少租金:%d",a[1][n]);//0没使用
return 0;
}
租用游艇问题:
使用dp[i][j]代表从i到j所花费最小费用
则将从i到j路径变成i->z->j
k代表要走的站点数量
起始位置为i所以终点位置为:i+k
保证最后一段为k所以循环截止到i<=n-k;
z就是中间站点。如果这样比dp[i][j]小,则交换值
#include <stdio.h>
int dp[100][100];
int main()
{
int n;
scanf("%d",&n);
for(int i=1;i<n;i++)
{
for(int j=i+1;j<=n;j++)
{
scanf("%d",&dp[i][j]);
}
}
for(int k=2;k<n;k++)
{
for(int i=1;i<=n-k;i++)
{
int j=i+k;
for(int z=i+1;z<=j;z++)
{
int temp=dp[i][z]+dp[z][j];
if(dp[i][j]>temp)
dp[i][j]=temp;
}
}
}
printf("%d\n",dp[1][n]);
return 0;
}