#include<stdio.h>
#include<iostream>
#include<stdlib.h>
using namespace std;
int main()
{
int num,min,minn,max,x=1;
int a[1000];
scanf("%d",&num);
for(int i=0;i<num;i++)
{
scanf("%d",&a[i]);
}
min=abs(a[0]-a[1]);
max=a[0];
minn=a[0];
for(int i=0;i<num;i++)
{
if(a[i]>max) max=a[i];
if(a[i]<minn) minn=a[i];
for(int j=0;j<num;j++)
{
if(i==j) continue;
if(abs(a[i]-a[j])<min)
{
min=abs(a[i]-a[j]);
}
}
}
while(max!=minn)
{
max=max-min;
x++;
}
printf("%d",x);
}
这是我自己写的代码,也不知道能不能通过蓝桥杯当时的OJ系统,反正给出的实例运行是正确的,大概的思路应该错不了。题目的意思是给你一个不完整的等差数列,让你计算出这个等差数列完整的情况最短应该有多少项。
表面上看上去好像有点复杂,但是经过逻辑转化后,我们可以这样来思考这个问题。这个数列最短的情况肯定下,公差肯定是这么多数之间差值的最小值。这个差值的最小值求法,我利用了二重循环,让每两个数相互求差并取绝对值,然后找出这么多差值的绝对值中最小的数即可。第二步是找出这么多数中最大值和最小值,这是这个最短数列的取值区间,然后使用一个while循环,让最大值每次循环减一次公差,计数器加一。直到最大值被减到等于最小值,这时输出计数器的值,即为这个最短等差数列的项数,特别注意,计数器的初始值应该设置为1,因为一次相减有两个数参与。
总体来说这题也不算太难,还是重在模型转化。