关于等差数列问题

在这里插入图片描述

#include<stdio.h>
#include<iostream>
#include<stdlib.h> 
using namespace std;
int main()
{
	int num,min,minn,max,x=1;
	int a[1000];
	scanf("%d",&num);
	for(int i=0;i<num;i++)
	{
		scanf("%d",&a[i]);
	}
	min=abs(a[0]-a[1]);
	max=a[0];
	minn=a[0];
	for(int i=0;i<num;i++)
	{
		if(a[i]>max)	max=a[i];
		if(a[i]<minn)	minn=a[i];
		for(int j=0;j<num;j++)
		{
			if(i==j)	continue;
			if(abs(a[i]-a[j])<min)
			{
				min=abs(a[i]-a[j]);
			}
		}
	}
	while(max!=minn)
	{
		max=max-min;
		x++;
	}
	printf("%d",x);
}

       这是我自己写的代码,也不知道能不能通过蓝桥杯当时的OJ系统,反正给出的实例运行是正确的,大概的思路应该错不了。题目的意思是给你一个不完整的等差数列,让你计算出这个等差数列完整的情况最短应该有多少项。
       表面上看上去好像有点复杂,但是经过逻辑转化后,我们可以这样来思考这个问题。这个数列最短的情况肯定下,公差肯定是这么多数之间差值的最小值。这个差值的最小值求法,我利用了二重循环,让每两个数相互求差并取绝对值,然后找出这么多差值的绝对值中最小的数即可。第二步是找出这么多数中最大值和最小值,这是这个最短数列的取值区间,然后使用一个while循环,让最大值每次循环减一次公差,计数器加一。直到最大值被减到等于最小值,这时输出计数器的值,即为这个最短等差数列的项数,特别注意,计数器的初始值应该设置为1,因为一次相减有两个数参与。
       总体来说这题也不算太难,还是重在模型转化。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值