CNN笔记

本文详细介绍了卷积神经网络(CNN)的基本概念,包括卷积层、池化层的运作方式,以及填充、步幅、滤波器大小等关键参数的影响。卷积层通过卷积运算实现特征提取,3维数据的卷积涉及通道方向的处理。池化层则通过缩小空间尺寸提高模型的鲁棒性。
摘要由CSDN通过智能技术生成

卷积神经网络(convolutional neural network CNN):
卷积神经网络和之前介绍的神经网络一样(属于相邻层所有的神经元之间都有连接,称为全连接affine),可以像堆积木一样通过组装层来构建。CNN中出现了卷积层(convolution层),和池化层。
在这里插入图片描述
图1. 之前的神经网络
在这里插入图片描述
图2. CNN中新增了Convolution层和Pooling层

卷积层:
CNN中会出现一些特有的束语,比如填充、步幅等。此外,各层中传递的数据是有形状的数据。
在卷积层的输入输出数据称为特征图(feature map)。其中,卷积层的输入数据称为输入特征图(input feature map), 输出的数据称为输出特征图(output feature map)。

卷积运算
卷积层进行的处理就是卷积运算。卷积运算相当于图像处理中的“滤波器运算”。在介绍卷积运算时。
图3.卷积运算示意图
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值