卷积神经网络(convolutional neural network CNN):
卷积神经网络和之前介绍的神经网络一样(属于相邻层所有的神经元之间都有连接,称为全连接affine),可以像堆积木一样通过组装层来构建。CNN中出现了卷积层(convolution层),和池化层。
图1. 之前的神经网络
图2. CNN中新增了Convolution层和Pooling层
卷积层:
CNN中会出现一些特有的束语,比如填充、步幅等。此外,各层中传递的数据是有形状的数据。
在卷积层的输入输出数据称为特征图(feature map)。其中,卷积层的输入数据称为输入特征图(input feature map), 输出的数据称为输出特征图(output feature map)。
卷积运算
卷积层进行的处理就是卷积运算。卷积运算相当于图像处理中的“滤波器运算”。在介绍卷积运算时。
图3.卷积运算示意图