- 博客(11)
- 收藏
- 关注
原创 【无标题】
因此,在白球概率范围[0.2,0.8]内,当p=1/3时表达式取得最大值,取得白球的概率的极大似然估计为1/3。我们假设取球事件为y,取到白球的概率为p,则取到黑球的概率为1-p,由于取球是独立事件(极大似然估计的要求),即不是黑球就是白球。很多文章中会用“模型已定,参数未知”来形容极大似然估计,在我们的例子中,模型可以看作是三次抽球的概率函数p^3 - 2p^2 + p,参数当然就是指其中的p了。极大似然原理:在随机过程中,任何有可能发生事件,概率大的事件发生的概率也大。中应用的非常广泛,尤其是。
2023-08-10 13:59:19 159 1
原创 pytorch保存和加载模型 & checkpoint断点续传
pytorch保存和加载模型保存模型有两种方式保存模型一、保存整个网络保存整个神经网络的的结构信息和模型参数信息,save的对象是网络net。 后缀一般命名为.pklnet = Net() # 保存和加载整个模型torch.save(net, 'model.pkl')model = torch.load('model.pkl')二、仅保存模型参数当需要为预测保存一个模型的时候,只需要保存训练模型的可学习参数即可。只保存神经网络的训练模型参数,save的对象是net.state_dic
2022-05-31 19:46:57 2533
原创 pytorch数据读取之理解dataloader和dataset
DataLoader和Dataset是pytorch中数据读取的核心能够将自己的科研数据输入到模型当中是进行研究的最初的一步也是最重要的一步一、torch.utils.data.Dataset该类是用来定义数据从哪里读取,以及如何读取的问题。在使用该类时,需要先继承该类。那么具体如何读取,需要复写其中的方法__getitem__() # 最为重要, 即每次怎么读数据,接受一个item索引,返回该索引的样本__len__() #len()返回值的是常数具体的类的实现如下:class MyD
2022-05-31 17:42:48 1129
原创 seed在模型中的应用及用法
SEEDseed在深度学习代码中叫随机种子,设置seed的目的是由于深度学习网络模型中初始的权值参数通常都是初始化成随机数。而使用梯度下降法最终得到的局部最优解对于初始位置点的选择很敏感,设置了seed就相当于规定了初始的随机值。设置随机种子的方法能够近似的完全复现作者的开源深度学习代码,随机种子的选择能够减少一定程度上算法结果的随机性,也就是更接近于原始作者的结果即产生随机种子意味着每次运行实验,产生的随机数都是相同的在深度学习代码中可以使用以下函数def seed_all(seed):
2022-05-31 15:48:00 6439
原创 文件读写sys.stdout,sys.stderr和open()函数获得运行状况
1.sys.stdoutstdout用于print和状态表达式的结果输出,及input()的瞬时输出sys.stdout的形式就是print的一种默认输出格式import os sys.stdout.write("hello world" + "\n")print("hello world")以上两个输出是相同的print 默认换行stdout.write 默认不换行+++++++++2.sys.stderrstderr与stdout一样,用于重定向错误信息至某个文件简而言之就是把
2022-05-31 11:28:33 1023
原创 在pyG上定义数据集
使用数据集的一般过程PyG定义了使用数据的一般过程:从网络上下载数据原始文件;对数据原始文件做处理,为每一个图样本生成一个Data对象;对每一个Data对象执行数据处理,使其转换成新的Data对象;过滤Data对象;保存Data对象到文件;获取Data对象,在每一次获取Data对象时,都先对Data对象做数据变换(于是获取到的是数据变换后的Data对象)。实际中并非需要严格执行每一个步骤,以上步骤在特定的条件下可以被跳过,具体内容在下文里会学到。创建内存数据集为了创建torch_geometric.d
2021-06-28 00:49:58 519
原创 节点表征学习[GCN、GAT]
节点表征学习[GCN、GAT]引言节点表征学习引言图神经网络机器学习、深度学习的根本目的是学习图数据,将图结构embedding为计算机可处理的向量矩阵。以空域的卷积为例,每一次卷积之后得到的的特征变换实际上是改变了节点的隐状态。得到每个节点聚合和更新之后的隐状态后就可以执行下游的任务(节点分类,边分类,图分类)。本次将比较只是用NN和用图神经网络算法(GCN、GAT)的差异。节点表征学习GCN的公式,在pyG中很好实现,下面看代码from torch_geometric.nn impor
2021-06-23 16:22:48 1360
原创 消息传递神经网络(pyG实现GCN层)
消息传递神经网络一、引言二、消息传递范式介绍三、消息传递的实现(pyG)1、MessagePassing基类2、继承MessagePassing实现GCNConv一、引言为节点生成节点表征是图计算任务成功的关键,神经网络的生成节点表征的操作叫做节点嵌入(node embeddi ng)二、消息传递范式介绍基于消息传递范式的生成节点表征的过程:我们从左往右来看此图。图的左边是我们输入的整张图(INPUT GRAPH),由ABCDEFG六个节点组成,现在目标是得到更新之后A节点(target no
2021-06-19 10:56:03 1645
原创 图神经网络导论与环境配置(pyG)
图神经网络导论与环境配置(pyG)引言简单图论重要知识 ----(图):重要知识二 ----(邻接矩阵):重要知识三 ----(度矩阵与拉普拉斯矩阵)重要知识四 ----(图的种类)图结构数据上的机器学习任务配置环境(linux)引言在深度学习的输入数据形式当中,我们常见到的就是矩阵、张量(如计算机视觉中的像素点)还有序列(文字、语言等自然语言处理)。但在现实生活中的数据格式多种多样,我们很难将所有数据保存成“网格点”的 形式。图,作为一种储存数据的结构更容易将某些数据进行储存(如知识图谱,化学分子的结
2021-06-16 17:45:00 781
原创 科学计算库Numpy基础
机器学习的数据由h×W的矩阵构成,行数对应样本个数,列数对应标签(即样本属性)。实验在构造数据的时候需要把数据构造成这样的矩阵。矩阵的计算效率很快。numpy即是专门用来做矩阵计算的(当然不只限矩阵)。用numpy打开一个数据:一般情况下用open打开数据一行一行的进行读取,而numpy中定义了一个函数帮我们之间读取数据import numpy #读取数据,使用numpy的genfromtxt函数,delimiter是指用什么来分隔你的数据,...
2020-11-18 20:06:44 213
原创 Format 的用法。GetwindowText
GetwindowtextW函数应该被一个成员变量加m_xx控件_作用.GetwindowtextW(类对象)
2018-07-24 20:52:55 469
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人