环境说明
win10、tensorflow-gpu1.13.1
问题描述
无法使用tensorboard,几乎什么方法都试过了。
在cmd中输入命令时可以获得进入tensorboard的链接地址,但是放到浏览器上就是打不开(除IE以外,主流浏览器基本都尝试过)
tensorboard访问方式可以参考此文:tensorboard使用详解
其实这个版本的tensorflow我之前也用过,之前是可以打开tensorboard的,后来有一天不知怎么的再也打不开…
可能的报错
通过cmd命令行输入命令后,虽然出现了地址,但是有报错。
TensorBoard 1.13.1 at http://DESKTOP-ACKLJDP:6006 (Press CTRL+C to quit)
Traceback (most recent call last):
File “d:\mydl\anaconda3\lib\runpy.py”, line 193, in _run_module_as_main
“main”, mod_spec)
File “d:\mydl\anaconda3\lib\runpy.py”, line 85, in run_code
exec(code, run_globals)
File "D:\myDL\Anaconda3\Scripts\tensorboard.exe_main.py", line 7, in
File “d:\mydl\anaconda3\lib\site-packages\tensorboard\main.py”, line 57, in run_main
app.run(tensorboard.main, flags_parser=tensorboard.configure)
File “d:\mydl\anaconda3\lib\site-packages\absl\app.py”, line 299, in run
_run_main(main, args)
File “d:\mydl\anaconda3\lib\site-packages\absl\app.py”, line 250, in _run_main
sys.exit(main(argv))
File “d:\mydl\anaconda3\lib\site-packages\tensorboard\program.py”, line 228, in main
self._register_info(server)
File “d:\mydl\anaconda3\lib\site-packages\tensorboard\program.py”, line 274, in _register_info
manager.write_info_file(info)
File “d:\mydl\anaconda3\lib\site-packages\tensorboard\manager.py”, line 269, in write_info_file
payload = “%s\n” % _info_to_string(tensorboard_info)
File “d:\mydl\anaconda3\lib\site-packages\tensorboard\manager.py”, line 129, in _info_to_string
for k in _TENSORBOARD_INFO_FIELDS
File “d:\mydl\anaconda3\lib\site-packages\tensorboard\manager.py”, line 129, in
for k in _TENSORBOARD_INFO_FIELDS
File “d:\mydl\anaconda3\lib\site-packages\tensorboard\manager.py”, line 51, in
(dt - datetime.datetime.fromtimestamp(0)).total_seconds()),
OSError: [Errno 22] Invalid argument
解决方法
更换tensorflow版本,由1.13.1改为1.14.0
原因:Windows系统下,tensorflow1.13.1可能有bug
特别说明:如果你要换成其他gpu版本的tensorflow,注意新版本tensorflow的对于CUDA和cudnn的版本要求,否则会有更多折磨人的问题出现;如果你只是想换成cpu版本,那么不必考虑CUDA和cudnn。具体可以翻看我之前的博客:0-Windows安装深度学习框架Tensorflow GPU版本
我是直接用pip安装的,命令如下
pip install tensorflow-gpu==1.14.0 --user
其中–user是在安装过程中它提示我使用的,一开始我没有使用这个选项,然后就安装失败,我猜测如果不加就报错的原因可能是权限不够。
如果你安装cpu版本就不需要在tensorflow后面加“-gpu”;而“==”后面接版本号