CodeForces - 699C - Vacations 动态规划

题目:

给出n天,你知道每天体育馆有没有开放,测试有没有开放,让你判断最少休息的天数,你不能连续2天运动或者测试。

每天需要判断三个决策:

1:休息  2:运动    3:测试

如果每天决策不同会影响答案,那么我们需要能够找出每天不同决策的最小答案。

用dp[i][0]记录如果今天是休息,那么今天为止的最少休息时间;

用dp[i][1]记录如果今天是运动,那么今天为止的最少休息时间;

用dp[i][2]记录如果今天是测试,那么今天为止的最少休息时间;

可以得出每个的状态转移方程

dp[i][0] = min(dp[i - 1][0], min(dp[i - 1][1], dp[i - 1][2])) + 1;    今天休息就不管昨天做什么,今天就等于昨天的最小值

dp[i][1] = min(dp[i - 1][2], dp[i - 1][0]);    今天运动,昨天只能休息或者测试,所以选择最小值

dp[i][2] = min(dp[i - 1][1], dp[i - 1][0]);   今天测试,昨天只能运动或者休息,选择它们之中的最小值

代码如下:

#include <iostream>
#include<algorithm>
using namespace std;

int main(void)
{
	int a[1000],dp[1000][3]; //dp表示i天最少休息多少次
	int n, i;
	memset(dp, 100, sizeof(dp));
	cin >> n;
	for (i = 1; i <= n; i++) {
		cin >> a[i];
	}
/*b[i][0]表示第i天休息时,目前为止最少的休息时间
* b[i][1]表示第i天运动时,目前为止最少的休息时间
* b[i][2]表示第i天测试时,目前为止最少的休息时间
*/
	dp[0][0]=0;  //第一天之前可以看成什么都没做
	for (i = 1; i<=n; i++) { //i从1开始,不用判断i-1,0-1是否越界
		dp[i][0] = min(dp[i - 1][0], min(dp[i - 1][1], dp[i - 1][2])) + 1;  //首先假使今天休息
		if (a[i]==2||a[i]==3) {
			dp[i][1] = min(dp[i - 1][2], dp[i - 1][0]);  //昨天休息或者测试
		}
		if (a[i]==1 || a[i] == 3) {
			dp[i][2] = min(dp[i - 1][1], dp[i - 1][0]);  //昨天休息或做运动
		}
		/* 当是number3时,昨天可能做运动,可能测试,2者都要比较*/
	}
	cout <<min(dp[n][0],min(dp[n][1],dp[n][2]));
}

 

引用\[1\]中提到了一种树形动态规划的方法来解决CodeForces - 982C问题。在这个问题中,subtree指的是子连通块,而不是子树。为了使cnt_white - cnt_black尽可能大,可以使用两次树形动态规划来求解。第一次是自底向上的过程,维护一个dp数组,表示以每个节点为根的子树中的最大连通块。第二次是自顶向下的过程,处理自底向上过程中无法包含的树链所代表的子树。在第二次遍历中,需要维护一个sum变量,用于存储树链所代表的子树的贡献。根据ans\[u\]的正负,决定是否能对相邻的子节点做出贡献。如果ans\[u\]为正,则减去dp\[v\]就是树链所代表的子树的权值。最终,ans\[u\]代表包含节点u在内的子连通块的最大权值。\[1\] 问题: CodeForces - 982C 树形DP是什么问题?如何解决? 回答: CodeForces - 982C是一个树形动态规划问题。在这个问题中,需要求解子连通块的最大权值和,使得cnt_white - cnt_black尽可能大。解决这个问题的方法是使用两次树形动态规划。第一次是自底向上的过程,维护一个dp数组,表示以每个节点为根的子树中的最大连通块。第二次是自顶向下的过程,处理自底向上过程中无法包含的树链所代表的子树。在第二次遍历中,需要维护一个sum变量,用于存储树链所代表的子树的贡献。根据ans\[u\]的正负,决定是否能对相邻的子节点做出贡献。最终,ans\[u\]代表包含节点u在内的子连通块的最大权值。\[1\] #### 引用[.reference_title] - *1* *2* [CodeForces - 1324F Maximum White Subtree(树形dp)](https://blog.csdn.net/qq_45458915/article/details/104831678)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值