Day 2
层次分析法与应用
层次分析法(AHP)是指将与决策总是有关的元素分解成目标、准则、方案等层次,在此基础之上进行分析的决策方法。在资源分配(过剩的资源如何处理才能获得最大化效益等)、选优排序(规划最佳的行驶路线等)、政策分析(选择合适的政策等)、冲突求解(企业谋求效率和环境污染问题的权衡等)以及决策预报()等领域得到广泛的应用。
一、成对比较矩阵和正互反矩阵
成对比较矩阵是指对影响目标O的因素进行两两比较形成的矩阵。如果成对比较矩阵满足
则称正互反矩阵。
二、权向量和一致性指标
满足一致性条件的正互反阵
如果不是一致的,采用最大特征根对应的特征向量作为权向量w
一致性指标是用来检验误差大小的
一致性正反阵,一致性指标CI等于零。
平均随机一致性指标RI
CR<0.1
三、组合权向量与组合一致性检验
四、层次分析法的基本步骤
1、根据问题中各因素的关系,将各因素大体分为三层(目标层、准则层和方案层)
2、构造相邻两层之间的正互反矩阵
3、求出特征根并检验(判断CR<0.1,若不小于则需要调整判断矩阵的元素取值?)