代码随想录算法训练营第四十八天 | 198.打家劫舍,213.打家劫舍II,337.打家劫舍III
1.1 198.打家劫舍
思路:
- dp[i]:考虑下标i(包括i)以内的房屋,最多可以偷窃的金额为dp[i]
dp[i] = max(dp[i - 2] + nums[i], dp[i - 1])
class Solution {
public:
int rob(vector<int>& nums) {
if (nums.size() == 0) return 0;
if (nums.size() == 1) return nums[0];
vector<int> dp(nums.size());
dp[0] = nums[0];
dp[1] = max(nums[0], nums[1]);
for (int i = 2; i < nums.size(); i++) {
dp[i] = max(dp[i - 2] + nums[i], dp[i - 1]);
}
return dp[nums.size() - 1];
}
};
- 时间复杂度: O(n)
- 空间复杂度: O(n)
1.2 213.打家劫舍II
思路:
- 情况二:考虑包含首元素,不包含尾元素
- 情况三:考虑包含尾元素,不包含首元素(考虑包含尾元素,但不一定要选尾部元素! )
// 注意注释中的情况二情况三,以及把198.打家劫舍的代码抽离出来了
class Solution {
public:
int rob(vector<int>& nums) {
if (nums.size() == 0) return 0;
if (nums.size() == 1) return nums[0];
int result1 = robRange(nums, 0, nums.size() - 2); // 情况二
int result2 = robRange(nums, 1, nums.size() - 1); // 情况三
return max(result1, result2);
}
// 198.打家劫舍的逻辑
int robRange(vector<int>& nums, int start, int end) {
if (end == start) return nums[start];
vector<int> dp(nums.size());
dp[start] = nums[start];
dp[start + 1] = max(nums[start], nums[start + 1]);
for (int i = start + 2; i <= end; i++) {
dp[i] = max(dp[i - 2] + nums[i], dp[i - 1]);
}
return dp[end];
}
};
- 时间复杂度: O(n)
- 空间复杂度: O(n)
1.3 337.打家劫舍III
思路:
- 一定是要后序遍历,因为通过递归函数的返回值来做下一步计算
- 确定递归函数的参数和返回值:返回dp数组,下标为0记录不偷该节点所得到的的最大金钱,下标为1记录偷该节点所得到的的最大金钱
- 确定终止条件:遇到空节点的话,就返回
- 确定遍历顺序:后序遍历
- 确定单层递归的逻辑:
- 偷当前节点,那么左右孩子就不能偷,
val1 = cur->val + left[0] + right[0]
- 不偷当前节点,那么左右孩子就可以偷,至于到底偷不偷一定是选一个最大的,
val2 = max(left[0], left[1]) + max(right[0], right[1])
- 偷当前节点,那么左右孩子就不能偷,
class Solution {
public:
int rob(TreeNode* root) {
vector<int> result = robTree(root);
return max(result[0], result[1]);
}
// 长度为2的数组,0:不偷,1:偷
vector<int> robTree(TreeNode* cur) {
if (cur == NULL) return vector<int>{0, 0};
vector<int> left = robTree(cur->left);
vector<int> right = robTree(cur->right);
// 偷cur,那么就不能偷左右节点。
int val1 = cur->val + left[0] + right[0];
// 不偷cur,那么可以偷也可以不偷左右节点,则取较大的情况
int val2 = max(left[0], left[1]) + max(right[0], right[1]);
return {val2, val1};
}
};
- 时间复杂度:O(n),每个节点只遍历了一次
- 空间复杂度:O(log n),算上递推系统栈的空间