代码随想录算法训练营第四十八天 | 198.打家劫舍,213.打家劫舍II,337.打家劫舍III

本文介绍了三个不同版本的打家劫舍问题,分别是198.打家劫舍、213.打家劫舍II和337.打家劫舍III。每个问题都采用了动态规划的思路来解决,通过维护一个状态数组dp来求解最大盗窃金额。在打家劫舍III中,问题转化为一棵树的节点选择问题,使用递归后序遍历来计算节点的最大价值。所有问题的时间复杂度均为O(n),空间复杂度分别为O(n)和O(logn)。
摘要由CSDN通过智能技术生成

代码随想录算法训练营第四十八天 | 198.打家劫舍,213.打家劫舍II,337.打家劫舍III

1.1 198.打家劫舍

思路:

  1. dp[i]:考虑下标i(包括i)以内的房屋,最多可以偷窃的金额为dp[i]
  2. dp[i] = max(dp[i - 2] + nums[i], dp[i - 1])
class Solution {
public:
    int rob(vector<int>& nums) {
        if (nums.size() == 0) return 0;
        if (nums.size() == 1) return nums[0];
        vector<int> dp(nums.size());
        dp[0] = nums[0];
        dp[1] = max(nums[0], nums[1]);
        for (int i = 2; i < nums.size(); i++) {
            dp[i] = max(dp[i - 2] + nums[i], dp[i - 1]);
        }
        return dp[nums.size() - 1];
    }
};
  • 时间复杂度: O(n)
  • 空间复杂度: O(n)

1.2 213.打家劫舍II

思路:

  1. 情况二:考虑包含首元素,不包含尾元素
  2. 情况三:考虑包含尾元素,不包含首元素(考虑包含尾元素,但不一定要选尾部元素! )
// 注意注释中的情况二情况三,以及把198.打家劫舍的代码抽离出来了
class Solution {
public:
    int rob(vector<int>& nums) {
        if (nums.size() == 0) return 0;
        if (nums.size() == 1) return nums[0];
        int result1 = robRange(nums, 0, nums.size() - 2); // 情况二
        int result2 = robRange(nums, 1, nums.size() - 1); // 情况三
        return max(result1, result2);
    }
    // 198.打家劫舍的逻辑
    int robRange(vector<int>& nums, int start, int end) {
        if (end == start) return nums[start];
        vector<int> dp(nums.size());
        dp[start] = nums[start];
        dp[start + 1] = max(nums[start], nums[start + 1]);
        for (int i = start + 2; i <= end; i++) {
            dp[i] = max(dp[i - 2] + nums[i], dp[i - 1]);
        }
        return dp[end];
    }
};
  • 时间复杂度: O(n)
  • 空间复杂度: O(n)

1.3 337.打家劫舍III

思路:

  1. 一定是要后序遍历,因为通过递归函数的返回值来做下一步计算
  2. 确定递归函数的参数和返回值:返回dp数组,下标为0记录不偷该节点所得到的的最大金钱,下标为1记录偷该节点所得到的的最大金钱
  3. 确定终止条件:遇到空节点的话,就返回
  4. 确定遍历顺序:后序遍历
  5. 确定单层递归的逻辑:
    1. 偷当前节点,那么左右孩子就不能偷,val1 = cur->val + left[0] + right[0]
    2. 不偷当前节点,那么左右孩子就可以偷,至于到底偷不偷一定是选一个最大的,val2 = max(left[0], left[1]) + max(right[0], right[1])
class Solution {
public:
    int rob(TreeNode* root) {
        vector<int> result = robTree(root);
        return max(result[0], result[1]);
    }
    // 长度为2的数组,0:不偷,1:偷
    vector<int> robTree(TreeNode* cur) {
        if (cur == NULL) return vector<int>{0, 0};
        vector<int> left = robTree(cur->left);
        vector<int> right = robTree(cur->right);
        // 偷cur,那么就不能偷左右节点。
        int val1 = cur->val + left[0] + right[0];
        // 不偷cur,那么可以偷也可以不偷左右节点,则取较大的情况
        int val2 = max(left[0], left[1]) + max(right[0], right[1]);
        return {val2, val1};
    }
};
  • 时间复杂度:O(n),每个节点只遍历了一次
  • 空间复杂度:O(log n),算上递推系统栈的空间
代码随想录算法训练营是一个优质的学习和讨论平台,提供了丰富的算法训练内容和讨论交流机会。在训练营中,学员们可以通过观看视频讲解来学习算法知识,并根据讲解内容进行刷题练习。此外,训练营还提供了刷题建议,例如先看视频、了解自己所使用的编程语言、使用日志等方法来提高刷题效果和语言掌握程度。 训练营中的讨论内容非常丰富,涵盖了各种算法知识点和解题方法。例如,在第14训练营中,讲解了二叉树的理论基础、递归遍历、迭代遍历和统一遍历的内容。此外,在讨论中还分享了相关的博客文章和配图,帮助学员更好地理解和掌握二叉树的遍历方法。 训练营还提供了每日的讨论知识点,例如在第15的讨论中,介绍了层序遍历的方法和使用队列来模拟一层一层遍历的效果。在第16的讨论中,重点讨论了如何进行调试(debug)的方法,认为掌握调试技巧可以帮助学员更好地解决问题和写出正确的算法代码。 总之,代码随想录算法训练营是一个提供优质学习和讨论环境的平台,可以帮助学员系统地学习算法知识,并提供了丰富的讨论内容和刷题建议来提高算法编程能力。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [代码随想录算法训练营每日精华](https://blog.csdn.net/weixin_38556197/article/details/128462133)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值