各个排序算法的思想以及时间复杂度
时间复杂度:
算法思想:
1. 直接插入排序:
循环查找未排序元素并将其已排序元素从后相比较并插入合适位置
public class InsertSort {
public static int[] insertSort(int[] arr) {
if(arr == null || arr.length < 2)
return arr;
int n = arr.length;
for (int i = 1; i < n; i++) {
int temp = arr[i];
int k = i - 1;
while(k >= 0 && arr[k] > temp)
k--;
//腾出位置插进去,要插的位置是 k + 1;
for(int j = i ; j > k + 1; j--)
arr[j] = arr[j-1];
//插进去
arr[k+1] = temp;
}
return arr;
}
}
2. 选择排序:
循环查找最小元素并交换。
public class SelectSort {
public static int[] selectSort(int[] a) {
int n = a.length;
for (int i = 0; i < n - 1; i++) {
int min = i;
for (int j = i + 1; j < n; j++) {
if(a[min] > a[j]) min = j;
}
//交换
int temp = a[i];
a[i] = a[min];
a[min] = temp;
}
return a;
}
}
3. 冒泡排序:
把第一个元素与第二个元素比较,如果第一个比第二个大,则交换他们的位置。接着继续比较第二个与第三个元素,如果第二个比第三个大,则交换他们的位置。我们对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对,这样一趟比较交换下来之后,排在最右的元素就会是最大的数。除去最右的元素,我们对剩余的元素做同样的工作,如此重复下去,直到排序完成。
public class BubbleSort {
public static int[] bubbleSort(int[] arr) {
if (arr == null || arr.length < 2) {
return arr;
}
int n = arr.length;
for (int i = 0; i < n; i++) {
for (int j = 0; j < n -i - 1; j++) {
if (arr[j + 1] < arr[j]) {
int t = arr[j];
arr[j] = arr[j+1];
arr[j+1] = t;
}
}
}
return arr;
}
)
优化冒泡算法: 假如从开始的第一对到结尾的最后一对,相邻的元素之间都没有发生交换的操作,这意味着右边的元素总是大于等于左边的元素,此时的数组已经是有序的了,我们无需再对剩余的元素重复比较下去了。
public class BubbleSort {
public static int[] bubbleSort(int[] arr) {
if (arr == null || arr.length < 2) {
return arr;
}
int n = arr.length;
for (int i = 0; i < n; i++) {
boolean flag = true;
for (int j = 0; j < n -i - 1; j++) {
if (arr[j + 1] < arr[j]) {
flag = false;
int t = arr[j];
arr[j] = arr[j+1];
arr[j+1] = t;
}
}
//一趟下来是否发生位置交换
if(flag)
break;
}
return arr;
}
}
4. 希尔排序:
希尔排序可以说是插入排序的一种变种。无论是插入排序还是冒泡排序,如果数组的最大值刚好是在第一位,要将它挪到正确的位置就需要 n - 1 次移动。也就是说,原数组的一个元素如果距离它正确的位置很远的话,则需要与相邻元素交换很多次才能到达正确的位置,这样是相对比较花时间了。希尔排序就是为了加快速度简单地改进了插入排序,交换不相邻的元素以对数组的局部进行排序。
希尔排序的思想是采用插入排序的方法,先让数组中任意间隔为 h 的元素有序,刚开始 h 的大小可以是 h = n / 2,接着让 h = n / 4,让 h 一直缩小,当 h = 1 时,也就是此时数组中任意间隔为1的元素有序,此时的数组就是有序的了。
public class ShellSort {
public static int[] shellSort(int arr[]) {
if (arr == null || arr.length < 2) return arr;
int n = arr.length;
// 对每组间隔为 h的分组进行排序,刚开始 h = n / 2;
for (int h = n / 2; h > 0; h /= 2) {
//对各个局部分组进行插入排序
for (int i = h; i < n; i++) {
// 将arr[i] 插入到所在分组的正确位置上
insertI(arr, h, i);
}
}
return arr;
}
/**
* 将arr[i]插入到所在分组的正确位置上
* arr[i]] 所在的分组为 ... arr[i-2*h],arr[i-h], arr[i+h] ...
*/
private static void insertI(int[] arr, int h, int i) {
int temp = arr[i];
int k;
for (k = i - h; k > 0 && temp < arr[k]; k -= h) {
arr[k + h] = arr[k];
}
arr[k + h] = temp;
}
}
5. 归并排序:
将一个大的无序数组有序,我们可以把大的数组分成两个,然后对这两个数组分别进行排序,之后在把这两个数组合并成一个有序的数组。由于两个小的数组都是有序的,所以在合并的时候是很快的。通过递归的方式将大的数组一直分割,直到数组的大小为 1,此时只有一个元素,那么该数组就是有序的了,之后再把两个数组大小为1的合并成一个大小为2的,再把两个大小为2的合并成4的 …… 直到全部小的数组合并起来。
public class MergeSort {
// 归并排序
public static int[] mergeSort(int[] arr, int left, int right) {
// 如果 left == right,表示数组只有一个元素,则不用递归排序
if (left < right) {
// 把大的数组分隔成两个数组
int mid = (left + right) / 2;
// 对左半部分进行排序
arr = mergeSort(arr, left, mid);
// 对右半部分进行排序
arr = mergeSort(arr, mid + 1, right);
//进行合并
merge(arr, left, mid, right);
}
return arr;
}
// 合并函数,把两个有序的数组合并起来
// arr[left..mif]表示一个数组,arr[mid+1 .. right]表示一个数组
private static void merge(int[] arr, int left, int mid, int right) {
//先用一个临时数组把他们合并汇总起来
int[] a = new int[right - left + 1];
int i = left;
int j = mid + 1;
int k = 0;
while (i <= mid && j <= right) {
if (arr[i] < arr[j]) {
a[k++] = arr[i++];
} else {
a[k++] = arr[j++];
}
}
while(i <= mid) a[k++] = arr[i++];
while(j <= right) a[k++] = arr[j++];
// 把临时数组复制到原数组
for (i = 0; i < k; i++) {
arr[left++] = a[i];
}
}
}
非递归的归并:
public class MergeSort {
// 非递归式的归并排序
public static int[] mergeSort(int[] arr) {
int n = arr.length;
// 子数组的大小分别为1,2,4,8...
// 刚开始合并的数组大小是1,接着是2,接着4....
for (int i = 1; i < n; i += i) {
//进行数组进行划分
int left = 0;
int mid = left + i - 1;
int right = mid + i;
//进行合并,对数组大小为 i 的数组进行两两合并
while (right < n) {
// 合并函数和递归式的合并函数一样
merge(arr, left, mid, right);
left = right + 1;
mid = left + i - 1;
right = mid + i;
}
// 还有一些被遗漏的数组没合并,千万别忘了
// 因为不可能每个字数组的大小都刚好为 i
if (left < n && mid < n) {
merge(arr, left, mid, n - 1);
}
}
return arr;
}
}
6. 快速排序:
我们从数组中选择一个元素,我们把这个元素称之为中轴元素吧,然后把数组中所有小于中轴元素的元素放在其左边,所有大于或等于中轴元素的元素放在其右边,显然,此时中轴元素所处的位置的是有序的。也就是说,我们无需再移动中轴元素的位置。从中轴元素那里开始把大的数组切割成两个小的数组(两个数组都不包含中轴元素),接着我们通过递归的方式,让中轴元素左边的数组和右边的数组也重复同样的操作,直到数组的大小为1,此时每个元素都处于有序的位置。
public class QuickSort {
public static int[] quickSort(int[] arr, int left, int right) {
if (left < right) {
//获取中轴元素所处的位置
int mid = partition(arr, left, right);
//进行分割
arr = quickSort(arr, left, mid - 1);
arr = quickSort(arr, mid + 1, right);
}
return arr;
}
private static int partition(int[] arr, int left, int right) {
//选取中轴元素
int pivot = arr[left];
int i = left + 1;
int j = right;
while (true) {
// 向右找到第一个小于等于 pivot 的元素位置
while (i <= j && arr[i] <= pivot) i++;
// 向左找到第一个大于等于 pivot 的元素位置
while(i <= j && arr[j] >= pivot ) j--;
if(i >= j)
break;
//交换两个元素的位置,使得左边的元素不大于pivot,右边的不小于pivot
int temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
arr[left] = arr[j];
// 使中轴元素处于有序的位置
arr[j] = pivot;
return j;
}
}
7. 堆排序:
堆排序就是把堆顶的元素与最后一个元素交换,交换之后破坏了堆的特性,我们再把堆中剩余的元素再次构成一个大顶堆,然后再把堆顶元素与最后第二个元素交换….如此往复下去,等到剩余的元素只有一个的时候,此时的数组就是有序的了。
public class Head {
// 堆排序
public static int[] headSort(int[] arr) {
int n = arr.length;
//构建大顶堆
for (int i = (n - 2) / 2; i >= 0; i--) {
downAdjust(arr, i, n - 1);
}
//进行堆排序
for (int i = n - 1; i >= 1; i--) {
// 把堆顶元素与最后一个元素交换
int temp = arr[i];
arr[i] = arr[0];
arr[0] = temp;
// 把打乱的堆进行调整,恢复堆的特性
downAdjust(arr, 0, i - 1);
}
return arr;
}
//下沉操作
public static void downAdjust(int[] arr, int parent, int n) {
//临时保存要下沉的元素
int temp = arr[parent];
//定位左孩子节点的位置
int child = 2 * parent + 1;
//开始下沉
while (child <= n) {
// 如果右孩子节点比左孩子大,则定位到右孩子
if(child + 1 <= n && arr[child] < arr[child + 1])
child++;
// 如果孩子节点小于或等于父节点,则下沉结束
if (arr[child] <= temp ) break;
// 父节点进行下沉
arr[parent] = arr[child];
parent = child;
child = 2 * parent + 1;
}
arr[parent] = temp;
}
}
8. 计数排序:
计数排序是一种适合于最大值和最小值的差值不是不是很大的排序。基本思想:就是把数组元素作为数组的下标,然后用一个临时数组统计该元素出现的次数,例如 temp[i] = m, 表示元素 i 一共出现了 m 次。最后再把临时数组统计的数据从小到大汇总起来,此时汇总起来是数据是有序的。
public class Counting {
public static int[] countSort(int[] arr) {
if(arr == null || arr.length < 2) return arr;
int n = arr.length;
int max = arr[0];
// 寻找数组的最大值
for (int i = 1; i < n; i++) {
if(max < arr[i])
max = arr[i];
}
//创建大小为max的临时数组
int[] temp = new int[max + 1];
//统计元素i出现的次数
for (int i = 0; i < n; i++) {
temp[arr[i]]++;
}
int k = 0;
//把临时数组统计好的数据汇总到原数组
for (int i = 0; i <= max; i++) {
for (int j = temp[i]; j > 0; j--) {
arr[k++] = i;
}
}
return arr;
}
}
优化一下
上面的代码中,我们是根据 max 的大小来创建对应大小的数组,假如原数组只有10个元素,并且最小值为 min = 10000,最大值为 max = 10005,那我们创建 10005 + 1 大小的数组不是很吃亏,最大值与最小值的差值为 5,所以我们创建大小为6的临时数组就可以了。
也就是说,我们创建的临时数组大小 (max - min + 1)就可以了,然后在把 min作为偏移量。
9. 计数排序
public class RadioSort {
public static int[] radioSort(int[] arr) {
if(arr == null || arr.length < 2) return arr;
int n = arr.length;
int max = arr[0];
// 找出最大值
for (int i = 1; i < n; i++) {
if(max < arr[i]) max = arr[i];
}
// 计算最大值是几位数
int num = 1;
while (max / 10 > 0) {
num++;
max = max / 10;
}
// 创建10个桶
ArrayList<LinkedList<Integer>> bucketList = new ArrayList<>(10);
//初始化桶
for (int i = 0; i < 10; i++) {
bucketList.add(new LinkedList<Integer>());
}
// 进行每一趟的排序,从个位数开始排
for (int i = 1; i <= num; i++) {
for (int j = 0; j < n; j++) {
// 获取每个数最后第 i 位是数组
int radio = (arr[j] / (int)Math.pow(10,i-1)) % 10;
//放进对应的桶里
bucketList.get(radio).add(arr[j]);
}
//合并放回原数组
int k = 0;
for (int j = 0; j < 10; j++) {
for (Integer t : bucketList.get(j)) {
arr[k++] = t;
}
//取出来合并了之后把桶清光数据
bucketList.get(j).clear();
}
}
return arr;
}
}
9.基数排序:
基数排序的排序思路是这样的:先以个位数的大小来对数据进行排序,接着以十位数的大小来多数进行排序,接着以百位数的大小……
排到最后,就是一组有序的元素了。不过,他在以某位数进行排序的时候,是用“桶”来排序的。
由于某位数(个位/十位….,不是一整个数)的大小范围为0-9,所以我们需要10个桶,然后把具有相同数值的数放进同一个桶里,之后再把桶里的数按照0号桶到9号桶的顺序取出来,这样一趟下来,按照某位数的排序就完成了。
public class RadioSort {
public static int[] radioSort(int[] arr) {
if(arr == null || arr.length < 2) return arr;
int n = arr.length;
int max = arr[0];
// 找出最大值
for (int i = 1; i < n; i++) {
if(max < arr[i]) max = arr[i];
}
// 计算最大值是几位数
int num = 1;
while (max / 10 > 0) {
num++;
max = max / 10;
}
// 创建10个桶
ArrayList<LinkedList<Integer>> bucketList = new ArrayList<>(10);
//初始化桶
for (int i = 0; i < 10; i++) {
bucketList.add(new LinkedList<Integer>());
}
// 进行每一趟的排序,从个位数开始排
for (int i = 1; i <= num; i++) {
for (int j = 0; j < n; j++) {
// 获取每个数最后第 i 位是数组
int radio = (arr[j] / (int)Math.pow(10,i-1)) % 10;
//放进对应的桶里
bucketList.get(radio).add(arr[j]);
}
//合并放回原数组
int k = 0;
for (int j = 0; j < 10; j++) {
for (Integer t : bucketList.get(j)) {
arr[k++] = t;
}
//取出来合并了之后把桶清光数据
bucketList.get(j).clear();
}
}
return arr;
}
}