竖式除法为什么商要从高位除起,为什么在整数除法、被除数大于除数的情况下,商的数位正好就是被除数的数位,商的个位就是被除数的个位、商的十位就是被除数的十位等等。起先没重视这个问题,但是后来感觉到有点奇怪,整数的加减乘感觉好理解,但是除法感觉有点怪,当然除法竖式计算应该没问题,如果有问题早都被大师指出来解决了。第一就是除法跟乘法相反,乘法想加,除法相减。这个感觉也很巧妙,就是被除数参与运算,商确定下来以后被减掉了,这部分被减的数字就像是完成了历史使命,当然,他幻化成了商的形式,也可以还原出来。第二是每次每除一次剩下的余数放到后面再除,这个就像是一个地方放着好几堆一样的东西,有人要搬走,他第一次搬走了一堆东西,但是把没有搬走剩下的放到下一堆再搬。第三就是除法从高位除起就是没有进位关系,除法是相减,利用剩下的数字确定商,这个就类似刚好把剩下的东西放到下一堆再搬动,有了顺序。第四就是除法确定了商的数字唯一性和位置。每次确定商的时候,是商和除数想乘,然后减掉乘后的数,剩下余数或者不剩,因为余数还没有参与运算,所以放到下一轮开始在计算,余数在高位表面看起来已经没有余数大,但是比他低位的数大的多,所以不能说余数就一定很小。还有就是商,商的话如果不够除,竖式除法在那个被除数对应的位置上应该是0,够除的话,则为1到9,所以说,商尽管可能有很多位,但是每一次除的时候商其实是一位,还有就是除数,除数有一位,两位等等没有限制,被除数也是一位或者多位,没有限制。比如说除数是一位数,被除数也是一位数,被除数小于除数,根据分的性质,其实都不够分,除法就是不够分就放到余数里面,感觉简单巧妙不拖泥带水,也就是说商是0,剩下的都是余数,虽然是0,但是他确定了商的位置是个位,和被除数个位正好能对的上。还有就是被除数还是一位数,被除数大于等于除数,商的位置同样还在个位上,和被除数一个位置,说明了商的位置,商的位数正好和被除数一一对应,剩下的为余数。再就是多位数除以一位数,按照规则和属性,要从最高位除起,这样可以顺便消化掉余数,如果最高位大于等于除数,这时候被除数就是他的位数的数字乘以他的数位,比如被除数在万位上,这个就是除数不变,被除数乘了10000,商也乘了一万,也就是说商和被除数恰好能对的商,剩下的余数参与下一轮计算,还有如果最高位小于等于除数,则被除数在向低位在扩充一位,也就是最高位和次高位,因为除数只有一位,而被除数有两位,所以完全够除了,还有就是把商扩大到10,除数也扩大到10,被除数为100,因为是扩大后想乘的结果才是100,所以说被除数有两位就够了,因为商只有一位,商的位置在被除数的次高位,根据被除数扩大多少倍,商也扩大多少倍,位置正好也能一一对应,商的数位和被除数数位正好一样。上面说的是多位数除以一位数,多位数除以多位数有什么规律,第一,多位数除以多位数的话每次试商,商都是一位,还有就是从高位除起,选取的被除数位数要么和除数相等,要么比除数大一位,商的数位正好和被除数的数位相等,也就是说我们只需按被除数关系就能读出商的数字,最后就是余数,余数本质上要小于除数,有些阶段,余数还会出现0的情况,余数的数位不变,和被除数的一样,这时候按照顺序,从上一次参与完运算的下一位开始,组成了一个新的数字,看这个数字够不够除,不够除在落下下下一位数字,直到够除,这时候的商的位置,自然和前面不冲突,而且还是跟被除数的数位相同,余数和剩下的数字就像是组成了一个新的数字,如果碰到不够除的情况,说明了商为零,但他的数位和被除数的数位一样,比如千位上只能商0,则被除数乘了一千,除数不变,商也乘了一千,所以数位也没有变,根据被除数就能读出商,一直除到最后,剩下的为余数,以上就是除法的逻辑总结,感觉除法里面包含着好几个逻辑,而且感觉好几个逻辑组合一气呵成,说明了古人在除法运算上闪现的智慧,也说明了小朋友们在小学阶段就能顺利学会除法这一运算,大脑估计有意或者无意的进行过复杂的思考,我感觉内容并不简单,只不过是学习的基础。不论多复杂的除法,每次计算的时候,商只有一位,所以可以试商,试商就是抓住主要矛盾,商和除数的第一位想乘,但是这样算下来的值要比真实值小一点,所以这样不行的话就把商调小一点再试,再就是从课本上,网上学习还有没有其他简便试商方法,特殊数字的运算方法,多学多练中掌握技巧,才能在计算中压缩时间和提高准确性。还有就是两个整数想除,除不尽,小数点位置的问题,最后个位商了一位,有余数,所以在被除数补了一个0,相当于乘了一个10,这时候商也是乘了10,算完后还原回去,商的个位和被除数的个位还是一一对应,但是右面多了数,这就是小数,这个就像是被除数个位后面藏着小数点一样,这时候商的个位也确定,正好和被除数的个位一一对应,所以商的小数点也在个位以后。
以上通过反复乘以十和除以是确定了商和被除数的位置关系,而且确立了小数点的位置,而且通过以上计算启发,也能解决小数计算的问题,有一句话,我们把未知的问题转化为已经解决的问题,通过以上,被除数的小数点已经确定,也就是能确定商小数点的位置,所以算小数除法时,如果除数是整数,那么商的小数点的位置不变,如果被除数是整数,小数点在被除数个位的后面,只不过隐藏起来了,商的小数点也在个位后面,如果除数是小数,只需把除数和被除数同时乘以10的倍数,商不变,比如说除数有两位小数,乘以10说明向右移动一位,乘以100,说明向右移动两位,这时候被除数和除数都同时乘以一百,或者同时向右移动两位,商不变,除数还变成了整数,这时候就成功的转化成了上面已经解决了的问题,当然必须以变化后的数字计算,个位也以现在被除数个位为准,因为是被除数和除数同时乘以若干个10,这个时候被除数有可能多了若干个0,当然必须以最右面的那个0当做个位进行计算,商和现在被除数数位一一对应,还有就是如果乘以若干个10还有小数点,则被除数就以现在小数点为小数点个位为个位,商的数位也和被除数意义对应,也就是说根据整数除法的商的位置关系,也间接解决了小数除法商的位置关系。当然小数乘法也可以乘以若干个十,将小数变为整数,然后在积中除以同样的若干个十,也就是说数的积大小没有变化,还确定了小数点的位置,也就是说先把小数转化为整数计算,然后还原为小数,这个乘十或者除十就像化学种的催化剂一样,他没有改变数字大小,但帮助参与了运算。
数学建模
发布于2025-05-20著作权归作者所有