又是一年的暑假来临,在课程学习之中明显感觉自己的代码功力尚有欠缺,希望利用这段时间弥补自己的不足,通过博客记录自己的成长,那么,开始吧。
递归实现1-N求和
#include<iostream>
using namespace std;
void printN(int N)
{
if(N)
{
printN(N-1);
cout<<N<<endl;
}
}
int main()
{
int n;
while(cin>>n)
{
printN(n);
}
}
通过递归调用printN()函数实现求和,发现当N较大如100000时,会直接爆掉,因为它所需要的空间大于它能用的空间,就爆掉了。
循环实现1-N求和
#include<iostream>
using namespace std;
void printN(int N)
{
int i;
for(int i=0;i<=N;i++)
cout<<i<<endl;
}
int main()
{
int n;
while(cin>>n)
{
printN(n);
}
}
这段代码就简单多了,只是为了和前面的递归调用作比较,说明在N较大时,递归调用空间的程度远超循环实现。
给定多项式在给定点x处的值两种方法比较
#include<iostream>
#include<time.h>
#include<math.h>
clock_t start,stop;
#define MAXL 10
#define MAXK 1e7
double duration;
using namespace std;
double f1(int n,double a[],double x)
{
int i;
double p=a[0];
for(int i=0;i<=n;i++)
p+=a[i]*pow(x,i);
}
double f2(int n,double a[],double x)
{
int i;
double p=a[n];
for(int i=n;i>0;i--)
p=p*x+a[i-1];
}
int main()
{
int i;
double a[MAXL];
for(int i=0;i<MAXL;i++)
a[i]=(double)i;
start=clock();
for(int i=0;i<MAXK;i++)
f1(MAXL-1,a,1.1);
stop=clock();
duration=(double)(stop-start)/CLK_TCK/MAXK;
printf("ticks= %f\n",(double)(stop-start));
printf("duration=%6.2e\n",duration);
start=clock();
for(int i=0;i<MAXK;i++)
f2(MAXL-1,a,1.1);
stop=clock();
duration=(double)(stop-start)/CLK_TCK/MAXK;
printf("ticks= %f\n",(double)(stop-start));
printf("duration=%6.2e\n",duration);
}
方法一:比较常规,就是从第一项一直加到最后一项;
方法二:利用秦九韶的算法,先从最后一项开始,令P=最后一项*x+倒数第二项,依次循环来实现。
在这里使用了clock()函数来实现计时,利用(stop-start)/CLK_TCK得到执行两种方法所需的时间,因执行一次时间过短,无法比较两者的区别,因而通过循环执行,如执行1e7次,再除以1e7得到每次执行的时间,可以发现方法二比前者快了一个数量级左右。
最大子列和算法2
#include<iostream>
#include<string.h>
using namespace std;
int main()
{
int n;
while(cin>>n)
{
int l[n];
memset(l,0,n);
for(int i=0;i<n;i++)
cin>>l[i];
int sum=0,maxsum=0;
for(int i=0;i<n;i++)
{
sum=0;
for(int j=i;j<n;j++)
{
sum+=l[j];
if(sum>maxsum)
maxsum=sum;
}
}
cout<<maxsum<<endl;
}
}
该算法通过两次循环得出结果,复杂度为O(n*2)
最大子列和算法3分而治之
#include<iostream>
using namespace std;
int Max3(int a,int b,int c)
{
/* 返回3个整数中的最大值 */
return a>b?a>c?a:c:b>c?b:c;
}
int DivideAndConquer(int list[],int left,int right)
{
/* 分治法求List[left]到List[right]的最大子列和 */
int MaxLeftSum, MaxRightSum; /* 存放左右子问题的解 */
int MaxLeftBorderSum, MaxRightBorderSum; /*存放跨分界线的结果*/
int LeftBorderSum, RightBorderSum;
int center, i;
if(left==right)
{/* 递归的终止条件,子列只有1个数字 */
if(list[left]>0)return list[left];
else return 0;
}
/* 下面是"分"的过程 */
center=(left+right)/2;/* 找到中分点 */
/* 递归求得两边子列的最大和 */
MaxLeftSum=DivideAndConquer(list,left,center);
MaxRightSum=DivideAndConquer(list,center+1,right);
/* 下面求跨分界线的最大子列和 */
MaxLeftBorderSum=0;LeftBorderSum=0;
for(int i=center;i>=left;i--)
{/* 从中线向左扫描 */
LeftBorderSum+=list[i];
if(LeftBorderSum>MaxLeftBorderSum)
MaxLeftBorderSum=LeftBorderSum;
}/* 左边扫描结束 */
MaxRightBorderSum=0;RightBorderSum=0;
for(int i=center+1;i<=right;i++)
{ /* 从中线向右扫描 */
RightBorderSum+=list[i];
if(RightBorderSum>MaxRightBorderSum)
MaxRightBorderSum=RightBorderSum;
}/* 右边扫描结束 */
/* 下面返回"治"的结果 */
return Max3(MaxLeftSum,MaxRightSum,MaxLeftBorderSum+MaxRightBorderSum);
}
int MaxSubseqSum3(int list[],int n)
{/* 保持与前2种算法相同的函数接口 */
return DivideAndConquer(list,0,n-1);
}
int main()
{
int n;
while(cin>>n)
{
int list[n];
for(int i=0;i<n;i++)
{
cin>>list[i];
}
cout<<MaxSubseqSum3(list,n)<<endl;
}
}
通过分治算法来实现最大子列和,复杂度为O(n*logn)(…分治算法理解的还不是很透彻,之后还要多看几遍的)
最大子列和算法4在线处理
#include<iostream>
using namespace std;
int main()
{
int n;
while(cin>>n)
{
int l[n];
for(int i=0;i<n;i++)
cin>>l[i];
int sum=0,maxsum=0;
for(int i=0;i<n;i++)
{
sum+=l[i];
if(sum>maxsum)
maxsum=sum;
else if(sum<0)
sum=0;
}
cout<<maxsum<<endl;
}
}
这种算法实在是太巧妙了,复杂度为O(n),只有一次循环,若sum>maxsum,则maxsum=sum完成更新,若sum<0,代表此前的数列全部舍弃,从下一个开始记起,真的是越想越觉得奇妙!(陈越老师讲的课真的很不错!老师人也很可爱!)
总的来说第一天学到了不少知识,和自己的预期计划大致相当,不过果然编程这种东西是真的很烧脑啊啊啊啊,饱和的时候学学python放松一下? 哈哈哈哈哈 。