HDOJ1430魔板

魔板
杭电OJ·1430
(http://acm.hdu.edu.cn/showproblem.php?pid=1430)

1 问题描述
在魔方风靡全球之后不久,Rubik先生发明了它的简化版——魔板。魔板由8个同样大小的方块组成,每个方块颜色均不相同,可用数字1-8分别表示。任一时刻魔板的状态可用方块的颜色序列表示:从魔板的左上角开始,按顺时针方向依次写下各方块的颜色代号,所得到的数字序列即可表示此时魔板的状态。例如,序列(1,2,3,4,5,6,7,8)表示魔板状态为:

1 2 3 4
8 7 6 5

对于魔板,可施加三种不同的操作,具体操作方法如下:

A: 上下两行互换,如上图可变换为状态87654321
B: 每行同时循环右移一格,如上图可变换为41236785
C: 中间4个方块顺时针旋转一格,如上图可变换为17245368

给你魔板的初始状态与目标状态,请给出由初态到目态变换数最少的变换步骤,若有多种变换方案则取字典序最小的那种。
2 输入
每组测试数据包括两行,分别代表魔板的初态与目态。
3 输出
对每组测试数据输出满足题意的变换步骤。
4 样例输入
12345678

17245368

12345678

82754631
5 样例输出
C

AC

6 问题分析
问题描述:设魔板问题可以用数字1,2,3,4,5,6,7,8表示方块的颜色序列,按顺时针方向依次写下各方块的颜色代号,所得到的数字序列即可表示此时魔板的状态。例如,序列(1,2,3,4,5,6,7,8)表示魔板状态为:
1 2 3 4
8 7 6 5
而对于魔板,有三种操作:
A: 上下两行互换,如上图可变换为状态87654321
B: 每行同时循环右移一格,如上图可变换为41236785
C: 中间4个方块顺时针旋转一格,如上图可变换为17245368
那么问题假设给出初态和目标状态,求多种变换方案则取字典序最小的那种。

数据结构设计:在这问题中,通过分析可以知道当A两次连续操作或者B四次连续操作还是C四次连续操作都会回到原来的数组,这样我们可以知道以上的情况都可能会导致死循环。
由于原始魔板数组通过若干A、B、C操作最终都可以得到目标魔板数组,所以我们需要设计方法限制最大的操作次数,如若大于限定的操作次数,停止操作ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值