P1216 [IOI1994][USACO1.5]数字三角形 Number Triangles
先来一题热热身
题目描述
观察下面的数字金字塔。
写一个程序来查找从最高点到底部任意处结束的路径,使路径经过数字的和最大。每一步可以走到左下方的点也可以到达右下方的点。
7
3 8
8 1 0
2 7 4 4
4 5 2 6 5
在上面的样例中,从7 到 3 到 8 到 7 到 5 的路径产生了最大
输入格式
第一个行包含 R(1<= R<=1000) ,表示行的数目。
后面每行为这个数字金字塔特定行包含的整数。
所有的被供应的整数是非负的且不大于100。
输出格式
单独的一行,包含那个可能得到的最大的和。
输入
5
7
3 8
8 1 0
2 7 4 4
4 5 2 6 5
输出
30
说明/提示
题目翻译来自NOCOW。
USACO Training Section 1.5
IOI1994 Day1T1
代码
#include <cstdio>
#include <iostream>
#include <cmath>
using namespace std;
int n,a[1010][1010],dp[1010][1010];
int main()
{
cin>>n;
for(int i=1;i<=n;i++)
for(int j=1;j<=i;j++)
cin>>a[i][j];
for(int i=1;i<=n;i++)
for(int j=1;j<=i;j++){
dp[i][j]=max(dp[i-1][j-1],dp[i-1][j])+a[i][j];
}
int maxi=-1;
for(int i=1;i<=n;i++)
{
maxi=maxi>dp[n][i]?maxi:dp[n][i];
}
cout<<maxi;
return 0;
}
问题 P: 数字三角形
问题描述
有这么一个游戏:
写出一个1至N的排列ai,然后每次将相邻两个数相加,构成新的序列,再对新序列进行这样的操作,显然每次构成的序列都比上一次的序列长度少1,直到只剩下一个数字位置。下面是一个例子:
3,1,2,4
4,3,6
7,9
16
最后得到16这样一个数字。
现在想要倒着玩这样一个游戏,如果知道N,知道最后得到的数字的大小sum,请你求出最初序列ai,为1至N的一个排列。若答案有多种可能,则输出字典序最小的那一个。
注意:这里字典序指的是1,2,3,4,5,6,7,8,9,10,11,12而不是1,10,11,12,2,3,4,5,6,7,8,9
输入
两个正整数n(<=12),sum(<=12345)
输出
输出包括1行,为字典序最小的那个答案。
当无解的时候,请什么也不输出。
样例输入
4 16
样例输出
3 1 2 4
题解
这道题如果没有思路的话会很?,但是根据这个规律很像杨辉三角的规律,可以猜到它和杨辉三角有关。
a b c d
a+b b+c c+d
a+2b+c b+2c+d
a+3b+3c+d
大家可以care一下最后一个的系数,刚好是1 3 3 1 是杨辉三角的第四行,所以可以得出,最后的16与1 3 3 1有关,同理类推
代码
#include <cstdio>
#include <iostream>
#include <cmath>
using namespace std;
int n,m,a[1010],visit[1010],dp[1010][1010];
//depth表示它于第几位(共n位),num表示总和数
void dfs(int depth,int num){
if(num>m)
return;
if(depth>n){
if(num==m){
cout<<a[1];
for(int i=2;i<=n;i++)
cout<<" "<<a[i];
exit(0);
}
return;
}
for(int i=1;i<=n;i++){
if(visit[i]==0){
visit[i]=1;
a[depth]=i;
dfs(depth+1,num+i*dp[n][depth]);
visit[i]=0;
}
}
}
int main()
{
cin>>n>>m;
dp[1][1]=1;
for(int i=2;i<=n;i++)
for(int j=1;j<=i;j++)
dp[i][j]=dp[i-1][j]+dp[i-1][j-1];
dfs(1,0);
return 0;
}