tensorflow学习(4.1)

这篇博客介绍了如何利用TensorFlow.Keras库搭建神经网络,包括导入数据集、创建模型、编译模型、训练模型等基本步骤。此外,还探讨了在实际应用中如何制作自己的数据集、实施数据增强来扩充数据,以及如何实现断点续训以保存和加载模型。同时,提到了通过可视化工具监测训练过程中的准确率和损失,并展示了将模型应用于图像识别的方法。
摘要由CSDN通过智能技术生成

tf.keras搭建神经网络八股

六步法

import

mnist = tf.keras.datasets.mnist

(x_train,y_train),(x_test,y_test) = mnist.load_data()

train test(自制数据集)

Sequential/Class

model.compile

model.fit

model.summary

神经网络八股功能扩展

1.自制数据集,解决本领域应用

2.数据增强,扩充数据集

3.断点续训,存取模型

4.参考提取,把参数存入文本

5.acc/loss可视化,查看训练效果

6.应用程序,绘图识物

数据增强

 断电续训

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值