本文仅是个人理解,如有谬误,请望矫正
导数的基本定义 (注意,可导一定连续,连续不一定可导,连续不一定存在切线变化)
我们可证一些常用导数
以此类推
其中反函数 反函数的导数=原函数导数的倒数
乘积函数的高阶求导为
等于二项式
隐函数的求导方法将函数看成和两部分,正常求导,求导为将看成常数,看成未知数求导后
其中指数函数我们利用对数隐函数的方式求导
函数的微分是增加后的增加量
我们可以利用微分求近似值
微分中值定理
若和在[a,b] 连续,(a,b)可导,至少有一点ξ,
罗尔定理
若存在 ,则
拉格朗日中值定理
,其几何意义是弦的斜率=点的斜率,证明:,则,满足罗尔定理,则成立
柯西中值定理
,其几何意义在参数方程上用拉格朗日中值定理 证明:,两边积分得,,满足罗尔定理,则成立
泰勒公式
每一个函数都可以由无数多个多项式累加而成,泰勒公式证明如下
我们由导数的定义可知,则,其中趋近于无穷小
一阶泰勒的表达式为
其中,是的高阶无穷小,可记为,则一阶泰勒为。而我们想要得到更精确的值,
则要对更进一步无穷小处理。我们可知, 洛必达得=。还原上去得=,其中是的高阶无穷小,可记为。二阶泰勒的表达式
。又,多次洛必达= ,三阶泰勒公式=
依此类推,得n阶泰勒=
且总=,称为拉格朗日余项 我们可以看出 当n=0时,泰勒公式=拉格朗日中值公式 当时,拉格朗日余项就变成佩亚诺余项,且有麦克劳林公式=
泰勒的展开式我们可以应用到很多地方,比如计算机计算三角函数值就是运用泰勒公式,比如常数的取值也可用泰勒无限逼近
函数的单调性和凹凸性
,为函数驻点,若,为极值点
, 且,=拐点 ,在(a,b)上 是凹函数,为凸函数
曲率表示弧线弯曲的程度
弧微分用表示,其中表示弧长的变化≈,故≈
曲率我们用表示,其中是角度的变化,我们可用来推导曲率,曲率圆半径=
曲率圆心的坐标为,同渐伸线的渐屈线方程一致
方程近似解的求法
1 二分法,即利用零点定理,取[a,b]中点ξ=,计算,与左边同号往右取,与右边同号往左去,依次循环
2 切线法
3 割线法