高数草稿-导数和微分,中值定理,泰勒展开的证明,单调性和凹凸性,曲率,方程近似解

本文仅是个人理解,如有谬误,请望矫正

导数的基本定义{\color{Red} \lim_{h\rightarrow 0}\frac{f(x+h)-f(x)}{h}={f}'(x)} (注意,可导一定连续,连续不一定可导,连续不一定存在切线变化)

我们可证一些常用导数

{\color{Red} {x}^{'n}=\lim_{h\rightarrow 0}\frac{(x+h)^{n}-x^{n}}{h}=\lim_{h\rightarrow 0}\frac{(1+\frac{h}{x})^{n}*x^{n}-x^{n}}{h}=\lim_{h\rightarrow 0}\frac{((1+\frac{h}{x})^{n}-1)*x^{n})}{h}\because((1+\frac{h}{x})^{n}-1)\sim \frac{nh}{x}\therefore=\frac{\frac{nh}{x}*x^{n}}{h}=nx^{n-1}}

{\color{Red} a^{'x}=\lim_{h\rightarrow 0}\frac{a^{x+h}-a^{x}}{h}=\lim_{x\rightarrow 0}\frac{a^{x}*(a^{h}-1)}{h}=a^{x}\lim_{x\rightarrow 0}\frac{a^{h}-1}{h}\because \frac{a^{h}-1}{h}\sim lna\therefore =a^{x}lna}

{\color{Red}log_{a'}x=\lim_{h\rightarrow 0}\frac{log_{a}(x+h)-log_{a}(x)}{h}=\lim_{h\rightarrow 0}\frac{log_{a}(\frac{x+h}{h})}{h}=\frac{1}{x}\lim_{h\rightarrow 0}\frac{log_a{(1+\frac{h}{x})}}{\frac{h}{x}}\because\frac{log_{a}(1+x)}{x}\sim\frac{1}{lna}\therefore =\frac{1}{xlna}}

{\color{Red}sin'x=\lim_{h\rightarrow 0}\frac{sin(x+h)-sinx}{h}= \lim_{h\rightarrow 0}\frac{sinxcosh-cosxsinh-sinx}{h}=\lim_{h\rightarrow 0}\frac{cosxsinh}{h}=cosx}

以此类推

其中反函数{\color{Red} f^{-1}(x)'=\frac{1}{f'(y)}} 反函数的导数=原函数导数的倒数

乘积函数的高阶求导为

{\color{Red} (uv)^{'n}=\sum_{k=0}^{n}C_{u}^{k}u^{n-k}v^{k}}等于二项式

隐函数的求导方法将函数看成{\color{Red} f(x)}{\color{Red} f(y)}两部分,{\color{Red} f(x)}正常求导,{\color{Red} f(y)}求导为将{\color{Red} x}看成常数,{\color{Red} y}看成未知数求导后{\color{Red} *\frac{dy}{dx}}

其中指数函数我们利用对数隐函数的方式求导

函数的微分是{\color{Red}\Delta x }增加后{\color{Red} \Delta y}的增加量

我们可以利用微分求近似值

{\color{Red} f({x_{0}}+\Delta x)\approx f(x_{0})+f'(x_{0})\Delta x}

微分中值定理

{\color{Red} f(x)}{\color{Red} F(x)}在[a,b] 连续,(a,b)可导,至少有一点ξ{\color{Red} (a<\xi <b)},

罗尔定理

若存在{\color{Red} f(a)=f(b)} ,则{\color{Red} f '(\xi )=0}

拉格朗日中值定理

{\color{Red}\frac{f(b)-f(a)}{b-a}=f'(\xi )},其几何意义是{\color{Red} a\rightarrow b}弦的斜率={\color{Red} \xi }点的斜率,证明:{\color{Red}\int \frac{f(b)-f(a)}{b-a}dx=\int f'(\xi )dx=\frac{f(b)-f(a)}{b-a}x=f(\xi )=F(x)},则{\color{Red} F(a)=F(b)},满足罗尔定理,则{\color{Red} F(\xi )=0}成立

柯西中值定理

{\color{Red} \frac{f(b)-f(a)}{F(b)-F(a)}=\frac{f'(\xi) }{F'(\xi) }},其几何意义在参数方程上用拉格朗日中值定理 证明:{\color{Red} (f(b)-f(a))F'(\xi)=f'(\xi)(F(b)-F(a))},两边积分得{\color{Red} \varphi (x)=(f(b)-f(a))F(\xi)-f(\xi)(F(b)-F(a))}{\color{Red} \varphi (a)=\varphi (b)},满足罗尔定理,则{\color{Red} \varphi (\xi)=0}成立

泰勒公式

每一个函数都可以由无数多个多项式累加而成,泰勒公式证明如下

我们由导数的定义可知{\color{Red} \lim_{h\rightarrow 0}\frac{f(x+h)-f(x)}{h}={f}'(x)},则{\color{Red} \frac{f(x)-f(x_{0})}{x-x_{0}}={f}'(x_{0})+\alpha (x)},其中{\color{Red} \alpha (x)}趋近于无穷小

一阶泰勒的表达式为{\color{Red} f(x)=f(x_{0})+f'(x_{0})(x-x_{0})+\alpha(x)(x-x_{0}) }

其中{\color{Red} lim\frac{\alpha (x)(x-x_{0})}{x-x_{0}}=0}{\color{Red} \alpha (x)(x-x_{0})}{\color{Red}(x-x_{0}) }的高阶无穷小,可记为{\color{Red} \alpha(x-x_{0})},则一阶泰勒为{\color{Red} f(x)=f(x_{0})+f'(x_{0})(x-x_{0})+\alpha(x-x_{0}) }。而我们想要得到更精确的值,

则要对{\color{Red} \alpha(x-x0)}更进一步无穷小处理。我们可知{\color{Red} \alpha(x-x_{0})=f(x)-f(x_{0})-f'(x_{0})(x-x_{0}) }{\color{Red} \lim_{x\to x_{0}}\frac{\alpha (x-x_{0})}{(x-x_{0})^{2}}=\lim_{x\to x_{0}}\frac{ f(x)-f(x_{0})-f'(x_{0})(x-x_{0})}{(x-x_{0})^{2}}} 洛必达得={\color{Red} \lim_{x\to x_{0}}\frac{f'(x)-f'(x_{0})}{2(x-x_{0}))}=\frac{​{f}''(x_{0})}{2}}。还原上去得{\color{Red} \alpha(x-x_{0})}={\color{Red} \frac{1}{2}{f}''(x_{0})(x-x_{0})^{2}+\alpha _{2}(x)(x-x_{0})^{2}},其中{\color{Red} \alpha _{2}(x)(x-x_{0})^{2}}{\color{Red}(x-x_{0})^{2} }的高阶无穷小,可记为{\color{Red}\alpha _{2}(x-x_{0})^{2}}。二阶泰勒的表达式

{\color{Red} f(x)=f(x_{0})+f'(x_{0})(x-x_{0})+\frac{1}{2}{f}''(x_{0})(x-x_{0})^{2}+\alpha _{2}(x)(x-x_{0})^{2}}。又{\color{Red}\lim_{x\to x_{0}}\frac{\alpha _{2}(x)(x-x_{0})^{2}}{(x-x_{0})^{3}}= \lim_{x\to x_{0}}\frac{f(x)-f(x_{0})-f'(x_{0})(x-x_{0})-\frac{1}{2}{f}''(x_{0})(x-x_{0})^{2}}{(x-x_{0})^{3}}},多次洛必达={\color{Red}\frac{f^{3}(x_{0})}{6}}  ,三阶泰勒公式={\color{Red} f(x)=f(x_{0})+f'(x_{0})(x-x_{0})+\frac{1}{2}{f}''(x_{0})(x-x_{0})^{2}+\frac{1}{6}f^{3}(x_{0})(x-x_{0})^{3}+a_{3}(x-x_{0})^{3}}

依此类推,得n阶泰勒={\color{Red} f(x)=f(x_{0})+f'(x_{0})(x-x_{0})+\frac{1}{2}{f}''(x_{0})(x-x_{0})^{2}+\frac{1}{6}f^{3}(x_{0})(x-x_{0})^{3}...+\frac{1}{n!}f^{n}(x_{0})(x-x_{0})^{n}+a_{n}(x-x_{0})^{n}}

{\color{Red} a_{n}(x-x_{0})^{n}}总={\color{Red}\frac{f^{n+1}(\xi )(x-x_{0})^{n+1}}{(n+1)!}(x\to \xi \to x_{0} )},称为拉格朗日余项 我们可以看出 当n=0时,泰勒公式=拉格朗日中值公式{\color{Red} f(x)=f(x_{0})+f'(\xi)(x-x_{0}) } 当{\color{Red} x_{0}=0 }时,拉格朗日余项就变成佩亚诺余项{\color{Red}\frac{f^{n+1}(\theta x)}{(n+1)!}x^{n}(0<\theta <1)},且有麦克劳林公式={\color{Red} f(x)=f(0)+f'(0)(x)+\frac{1}{2}{f}''(0)(x)^{2}+\frac{1}{6}f^{3}(0)(x)^{3}...+\frac{1}{n!}f^{n}(0)(x)^{n}+\frac{f^{n+1}(\theta x)}{(n+1)!}(x)^{n+1}}

泰勒的展开式我们可以应用到很多地方,比如计算机计算三角函数值就是运用泰勒公式,比如常数{\color{Red} e}的取值也可用泰勒无限逼近

函数的单调性和凹凸性

{\color{Red} f'(x_{0})=0}{\color{Red} x_{0}}为函数驻点,若{\color{Red}\lim_{x \to x _{0+}} f'(x_{0})*\lim_{x\to x_{0-}} f'(x_{0})<0}{\color{Red} x_{0}}为极值点
{\color{Red} f''(x_{0})=0}, 且{\color{Red}\lim_{x \to x _{0+}} f''(x_{0})*\lim_{x\to x_{0-}} f''(x_{0})<0}{\color{Red} x_{0}}=拐点 ,在(a,b) {\color{Red} f''(x)>0}是凹函数,{\color{Red} f''(x)<0}为凸函数

曲率表示弧线弯曲的程度

弧微分用{\color{Red} \frac{\Delta s}{\Delta x}}表示,其中{\color{Red}\Delta s}表示弧长的变化≈{\color{Red}\sqrt{ \Delta x^{2}+ \Delta y^{2}}},故{\color{Red} \frac{\Delta s}{\Delta x}}{\color{Red} \sqrt{1+{y}'}}

曲率我们用{\color{Red} \frac{\Delta \alpha }{\Delta s}}表示,其中{\color{Red}\Delta a}是角度的变化,我们可用{\color{Red}\tan \alpha =y{}'}来推导曲率{\color{Red}k=\frac{|y''|}{(1+y'^{2})^{\frac{3}{2}}}},曲率圆半径={\color{Red}\frac{1}{k}}

曲率圆心{\color{Red}(\alpha ,\beta )}的坐标为{\color{Red}\alpha =x-\frac{y'(1+y'^{2})}{y''}},{\color{Red} \beta =y+\frac{1+y'^{2}}{y''}}同渐伸线的渐屈线方程一致

方程近似解的求法

1 二分法,即利用零点定理,取[a,b]中点ξ={\color{Red} \frac{a+b}{2}}计算{\color{Red} f(\xi )},与左边同号往右取,与右边同号往左去,依次循环

2 切线法 {\color{Red} x_{n+1}=x_{n}-\frac{f(x_{n})}{f'x_{n}}}

3 割线法 {\color{Red} x_{n+1}=x_{n}-\frac{x_{n}-x_{n-1}}{f(x_{n})-f(x_{n-1})}*f(x_{n})}

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值