题目链接:http://ybt.ssoier.cn:8088/problem_show.php?pid=1615
a , b , c a, b, c a,b,c 成等差数列的充分必要条件是 a + c = 2 ∗ b a+c=2 * b a+c=2∗b。
若 a , b , c a, b, c a,b,c 成等比数列,则有 b 2 = a ∗ c b^2 = a * c b2=a∗c。
等差数列第 n n n 项的通项公式为 a n = a 1 + ( n − 1 ) ∗ d a_n = a_1 + (n-1)*d an=a1+(n−1)∗d
等比数列第 n n n 项的通项公式为 a n = a 1 ∗ q n − 1 a_n = a_1*q^{n-1} an=a1∗qn−1
若 a , b , c a, b, c a,b,c 既是等差数列又是等比数列,那它一定是常数列,不影响最终的答案。
#include <iostream>
using namespace std;
typedef long long ll;
const int mod = 200907;
int qmi(int a, int b, int m)
{
int res = 1;
while (b)
{
if (b & 1) res = (ll)res * a % m;
a = (ll)a * a % m;
b >>= 1;
}
return res;
}
int main()
{
int T;
cin >> T;
while (T--)
{
int a, b, c, k;
cin >> a >> b >> c >> k;
if (a + c == 2 * b)
{
cout << (a % mod + (ll)(k - 1) * (b - a) % mod) % mod << endl;
}
else
{
cout << (a % mod * (ll)qmi(b / a, k - 1, mod)) % mod << endl;
}
}
return 0;
}