【数据结构算法】⑤、栈和队列
数据结构与算法 总共分为19个系列
①、数据结构与算法[基础]+线性结构部分内容篇
②、单向循环链表的创建插入删除实现篇
③、双向链表和双向循环链表的实现篇
④、数据结构-线性表-算法练习篇
⑤、栈(代码实现)和队列(原理概念)篇
⭐️本文章知识点大纲
- 数据结构和线性表练习题、简单题
- 线性表算法题
⭐️栈和队列
栈和队列的特点:
限定性数据结构
属于线性结构
⭐️①、栈
如何设计一个栈结构(从顺序存储/链式存储角度下去设计)
栈的队列原则是:先进后出
一、顺序
实现栈
1.1 结构图 - 栈
1.2 结构图 - 栈的栈顶
1.3 ⌨️栈的代码实现 顺序栈结构
-1 表示一个标记 用来记录空栈
内容包含:
- 创建一个空栈
- 清空一个栈
- 判断栈是否为空
- 返回栈的长度
- 获取栈顶
- 压栈(入栈)
- 出栈
- 栈的遍历
#include "stdio.h"
#include "stdlib.h"
#include "math.h"
#include "time.h"
#define OK 1
#define ERROR 0
#define TRUE 1
#define FALSE 0
#define MAXSIZE 20 /* 存储空间初始分配量 */
typedef int Status;
typedef int SElemType; /* SElemType类型根据实际情况而定,这里假设为int */
/* 顺序栈结构 */
typedef struct
{
SElemType data[MAXSIZE];
int top; /* 用于栈顶指针 */
}SqStack;
//4.1 构建一个空栈S
Status InitStack(SqStack *S){
S->top = -1;
return OK;
}
//4.2 将栈置空
Status ClearStack(SqStack *S){
//疑问: 将栈置空,需要将顺序栈的元素都清空吗?
//不需要,只需要修改top标签就可以了.
S->top = -1;
return OK;
}
//4.3 判断顺序栈是否为空;
Status StackEmpty(SqStack S){
if (S.top == -1)
return TRUE;
else
return FALSE;
}
//4.4 返回栈的长度
int StackLength(SqStack S){
return S.top + 1;
}
//4.5 获取栈顶
Status GetTop(SqStack S,SElemType *e){
if (S.top == -1)
return ERROR;
else
*e = S.data[S.top];
return OK;
}
//4.6 压栈(入栈) 插入元素e为新栈顶元素
Status PushData(SqStack *S, SElemType e){
//栈已满 我们是从0开始数的 所以使用MAXSIZE -1
if (S->top == MAXSIZE -1) {
return ERROR;
}
//栈顶指针+1;
S->top ++;
//将新插入的元素赋值给栈顶空间
S->data[S->top] = e;
return OK;
}
//4.7 出栈 删除S栈顶元素,并且用e带回
Status Pop(SqStack *S,SElemType *e){
//空栈,则返回error;
if (S->top == -1) {
return ERROR;
}
//将要删除的栈顶元素赋值给e
*e = S->data[S->top];
//栈顶指针--;
S->top--;
return OK;
}
//4.8 栈的遍历 从栈底到栈顶依次对栈中的每个元素打印
Status StackTraverse(SqStack S){
int i = 0;
printf("此栈中所有元素");
while (i<=S.top) {
printf("%d ",S.data[i++]);
}
printf("\n");
return OK;
}
int main(int argc, const char * argv[]) {
// insert code here...
printf("顺序栈的表示与实现!\n");
SqStack S;
int e;
if (InitStack(&S) == OK) {
for (int j = 1 ; j < 10; j++) {
PushData(&S, j);
}
}
printf("顺序栈中元素为:\n");
StackTraverse(S);
Pop(&S, &e);
printf("弹出栈顶元素为: %d\n",e);
StackTraverse(S);
printf("是否为空栈:%d\n",StackEmpty(S));
GetTop(S, &e);
printf("栈顶元素:%d \n栈长度:%d\n",e,StackLength(S));
ClearStack(&S);
printf("是否已经清空栈 %d, 栈长度为:%d\n",StackEmpty(S),StackLength(S));
return 0;
}
二、链式表
实现栈结构
1.1 、结构图 - 链式表栈
不管是顺序实现 还是链式实现
栈的逻辑是一样的
只不过是链式 使用节点去操作
- 结构图
- 进栈
- 出栈
1.2 ⌨️栈的代码实现 链式栈结构
StackNode表示链式栈结构的节点
内容包含:
- 链式栈的节点
- 链式栈的结构
- 构建空栈
- 置为空栈
将栈里面的数据全部销毁
- 判断栈是不是为空
- 返回栈的长度
- 获取栈顶元素
- 入栈
- 出栈
10.遍历栈的元素
#include "stdio.h"
#include "stdlib.h"
#include "math.h"
#include "time.h"
#define OK 1
#define ERROR 0
#define TRUE 1
#define FALSE 0
#define MAXSIZE 20 /* 存储空间初始分配量 */
typedef int Status;
typedef int SElemType; /* SElemType类型根据实际情况而定,这里假设为int */
/* 链栈结构 */
// 栈里节点
typedef struct StackNode
{
SElemType data;
struct StackNode *next;
}StackNode,*LinkStackPtr;
// 链式栈结构
typedef struct
{
LinkStackPtr top;
int count;
}LinkStack;
/*5.1 构造一个空栈S */
Status InitStack(LinkStack *S)
{
S->top=NULL;
S->count=0;
return OK;
}
/*5.2 把链栈S置为空栈*/
Status ClearStack(LinkStack *S){
LinkStackPtr p,q;
p = S->top;
while (p) {
q = p;
p = p->next;
free(q);
}
S->count = 0;
return OK;
}
/*5.3 若栈S为空栈,则返回TRUE, 否则返回FALSE*/
Status StackEmpty(LinkStack S){
if (S.count == 0)
return TRUE;
else
return FALSE;
}
/*5.4 返回S的元素个数,即栈的长度*/
int StackLength(LinkStack S){
return S.count;
}
/*5.5 若链栈S不为空,则用e返回栈顶元素,并返回OK ,否则返回ERROR*/
Status GetTop(LinkStack S,SElemType *e){
if(S.top == NULL)
return ERROR;
else
*e = S.top->data;
return OK;
}
/*5.6 插入元素e到链栈S (成为栈顶新元素)*/
Status Push(LinkStack *S, SElemType e){
//创建新结点temp
LinkStackPtr temp = (LinkStackPtr)malloc(sizeof(StackNode));
//赋值
temp->data = e;
//把当前的栈顶元素赋值给新结点的直接后继, 参考图例第①步骤;
temp->next = S->top;
//将新结点temp 赋值给栈顶指针,参考图例第②步骤;
S->top = temp;
S->count++;
return OK;
}
/*5.7 若栈不为空,则删除S的栈顶元素,用e返回其值. 并返回OK,否则返回ERROR*/
Status Pop(LinkStack *S,SElemType *e){
LinkStackPtr p;
if (StackEmpty(*S)) {
return ERROR;
}
//将栈顶元素赋值给*e
*e = S->top->data;
//将栈顶结点赋值给p,参考图例①
p = S->top;
//使得栈顶指针下移一位, 指向后一结点. 参考图例②
S->top= S->top->next;
//释放p
free(p);
//个数--
S->count--;
return OK;
}
/*5.8 遍历链栈*/
Status StackTraverse(LinkStack S){
LinkStackPtr p;
p = S.top;
while (p) {
printf("%d ",p->data);
p = p->next;
}
printf("\n");
return OK;
}
int main(int argc, const char * argv[]) {
// insert code here...
printf("链栈定义与实现\n");
int j;
LinkStack s;
int e;
if(InitStack(&s)==OK)
for(j=1;j<=10;j++)
Push(&s,j);
printf("栈中元素依次为:");
StackTraverse(s);
Pop(&s,&e);
printf("弹出的栈顶元素 e=%d\n",e);
StackTraverse(s);
printf("栈空否:%d(1:空 0:否)\n",StackEmpty(s));
GetTop(s,&e);
printf("栈顶元素 e=%d 栈的长度为%d\n",e,StackLength(s));
ClearStack(&s);
printf("清空栈后,栈空否:%d(1:空 0:否)\n",StackEmpty(s));
return 0;
}
⭐️②、栈和递归
递归: 直接或者间接调用自己
- 数学定义是递归、阶乘/斐波那契数列
- 数据结构是递归 链表是不是递归?(链表的定义是符合递归的)
- 问题是递归的? 兔子生兔子
1. 斐波那契数列 兔子繁衍问题
1.1 结果图 - 斐波那契数列
兔子繁殖 具体可以查看这里的基本概念
1.2 流程图 - 递归过程与递归工作栈
1.3 ⌨️递归实现 斐波那契数列
int Fbi(int i){
if(i<2)
return i == 0?0:1;
return Fbi(i-1)+Fbi(i-2);
}
int main(int argc, const char * argv[]) {
// insert code here...
printf("斐波那契数列!\n");
// 1 1 2 3 5 8 13 21 34 55 89 144
for (int i =0; i < 10; i++) {
printf("%d ",Fbi(i));
}
printf("\n");
return 0;
}
⭐️③、队列
队列的队列原则是:
先进先出
1.1 结构图 - 队列
1.2. 表示与操作图 - 队列
2. 循环队列 是因为队列存储会存在假溢出的情况
比如一块空间能存储6个数据
那么在操作的过程中会不断地出队跟入队
例如上面的图d
c5、c6已经在队尾了 。实际上它的队列没有满。那么这也就是假溢出。
2.1 结构图 - 循环队列
2.2 循环队列中头尾指针与元素之间关系 - 队列会存储在假溢出的情况
循环队列没有固定的头和尾
循环队列设计的思想:
- 要预留一个空间 不操作
- 比如存储5个数字。 那么开辟6个空间。
判断队空和队满公式
判断队空: Q.front == Q.rear;
判断队满: (Q.rear + 1) % MAXSIZE == Q.front
比如下图的队满情况