数值算法
文章平均质量分 91
.图灵的猫.
一只被偏微分方程带偏了的人工智能算法设计师
展开
-
克罗内克积
数学上,克罗内克积是两个任意大小的矩阵间的运算.克罗内克积是张量积的特殊形式,以德国数学家利奥波德·克罗内克命名.原创 2022-04-21 10:25:33 · 5000 阅读 · 0 评论 -
用分块循环约化法求 Ax=b
掌握循环约化法的基本思想, 用分块循环约化法解方程组 A x=b原创 2022-04-20 23:44:23 · 738 阅读 · 0 评论 -
矩阵分解(超全整理笔记)
长方阵的基本分解、长方阵的满秩分解、Jordan 分解、Schur 分解、可逆矩阵的三角分解的条件、不可逆矩阵的三角分解、Doolittle 分解、Crout 分解、LDR 分解、正定 Hermite 矩阵的三角分解、Householder 矩阵、Householder 变换、一般矩阵的 QR 分解、可逆矩阵的 QR 分解、矩阵的奇异值、矩阵的酉等价、矩阵的奇异值分解、矩阵的奇异值分解的一般步骤、置换矩阵、带⾏置换矩阵 (P) 的(LU) 分解原创 2022-04-15 15:10:40 · 3297 阅读 · 0 评论 -
非线性差分格式的迭代求解
差分格式中非线性项的处理方法原创 2022-04-15 13:26:35 · 680 阅读 · 0 评论 -
Schrödinger 方程的有限差分方法(附Matlab代码及数值结果)
Schrödinger 方程奠定了近代量子力学的基础, 揭示了微观世界中物质运动的 基本规律. Schrödinger 方程在量子力学中的地位如同牛顿三定律之于经典力学、麦克斯韦方程之于电磁学. Schrödinger 方程在等离子物理、非线性光子学、水波及双分子动力学等领域也有重要应用.原创 2022-03-09 21:40:49 · 2213 阅读 · 0 评论 -
一维非齐次热传导方程的向后 Euler 格式(附matlab源代码)
一维非齐次热传导方程的向后 Euler 格式差分格式数值结果源代码原创 2022-02-27 18:50:13 · 2381 阅读 · 2 评论 -
有限元方法求解一维扩散方程(FEALPy)
有限元方法求解一维扩散方程之前完成了 FEALPy 有限元求解 Poisson 方程 的数值算例, 通过湘潭大学王唯师兄的协助, 今天基于 FEALPy 运用有限元方法求解一个抛物型方程,为说明使用方法而又简单起见,于是理论部分专注于讨论下面这个一维的抛物型方程原创 2022-02-14 17:28:31 · 3674 阅读 · 1 评论 -
数值分析与科学计算经典题目解答
四川师范大学数学科学学院2021 级研究生《数值分析与科学计算》期末考试题考生姓名: 刘洋学号:20210801068一、(30 分)误差是数值计算中一个非常重要的研究内容.请回答以下问题:设 In=∫01xnex−1dxI_{\mathrm{n}}=\int_{0}^{1} x^{n} e^{x-1} d xIn=∫01xnex−1dx, 求证:(1) In=1−nIn−1,n=1,2,3,…I_{\mathrm{n}}=1-n I_{n-1}, n=1,2,3, \ldots原创 2022-01-05 11:38:04 · 1147 阅读 · 0 评论 -
一维非齐次热传导方程的紧致差分格式(附Matlab代码)
一维非齐次热传导方程的紧致差分格式(附Matlab代码)考虑一维非齐次热传导方程DirichletDirichletDirichlet初边值问题(第一类边界值问题):{∂u∂t=∂2u∂x2,0≤x≤1,0≤t≤1u(x,0)=ex,0≤x≤1u(0,t)=et,u(1,t)=e1+t,,0≤t≤1\left\{\begin{array}{lcl}\dfrac{\partial{u}}{\partial{t}}=\dfrac{\partial^{2}{u}}{\partial{x}^{2}} &a原创 2021-10-26 01:51:12 · 5209 阅读 · 132 评论 -
四阶龙格-库塔(Runge-Kutta)方法求解高阶微分方程(附Python代码)
用Python实现四阶龙格-库塔(Runge-Kutta)方法求解高阶微分方程文章目录用Python实现四阶龙格-库塔(Runge-Kutta)方法求解高阶微分方程问题求解步骤问题应用四阶龙格-库塔(Runge-Kutta)方法求解如下二阶初值问题:{t2x′′(t)−2tx′(t)+2x(t)=t3lnt,t∈[1,5]x(t)=1,t=1x′(t)=0.t=1\left\{\begin{aligned}t^2x''(t)-2tx'(t)+2x(t) & = t^3\ln t, &原创 2021-09-29 13:50:50 · 10735 阅读 · 3 评论