搭配飞行员 网络流24题(1/24)

通过二分图最大匹配策略,解决飞机驾驶员搭配问题,确保每个飞机配置一个正驾驶员和一个副驾驶员,避免两人同时飞行的情况,最大化出航飞机数量。问题规模为2到100名驾驶员。
摘要由CSDN通过智能技术生成

搭配飞行员
题面:
飞行大队有若干个来自各地的驾驶员,专门驾驶一种型号的飞机,这种飞机每架有两个驾驶员,需一个正驾驶员和一个副驾驶员。由于种种原因,例如相互配合的问题,有些驾驶员不能在同一架飞机上飞行,问如何搭配驾驶员才能使出航的飞机最多。

因为驾驶工作分工严格,两个正驾驶员或两个副驾驶员都不能同机飞行。
2<=n<=100
思路: 二分图最大匹配,二分图上跑一下最大流即可

#include <bits/stdc++.h>
#define INF 0x3f3f3f3f
using namespace std;
const int N = 10005;
int n, m, ss, tt;
int dis[N];
int cur[N];
queue<int> q;

struct Edge {
    int to;
    int value;
    int next;
} e[N * 4];
int head[N], cnt = -1;
void add(int from, int to, int value) {
    cnt++;
    e[cnt].to = to;
    e[cnt].value = value;
    e[cnt].next = head[from];
    head[from] = cnt;
}

bool bfs(int s, int t) {
    q = queue<int>();
    memset(dis, -1, sizeof(dis));
    dis[s] = 0;
    q.push(s);
    while (!q.empty()) {
        int x = q.front();
        q.pop();
        for (int i = head[x]; i > -1; i = e[i].next) {
            int now = e[i].to;
            if (dis[now] == -1 && e[i].value != 0) {
                dis[now] = dis[x] + 1;
                q.push(now);
            }
        }
    }
    return dis[t] != -1;
}

int dfs(int x, int t, int maxflow) {
    if (x == t)
        return maxflow;
    int ans = 0;
    for (int i = cur[x]; i > -1; i = e[i].next) {
        int now = e[i].to;
        if (dis[now] != dis[x] + 1 || e[i].value == 0 || ans >= maxflow)
            continue;
        cur[x] = i;
        int f = dfs(now, t, min(e[i].value, maxflow - ans));
        e[i].value -= f;
        e[i ^ 1].value += f;
        ans += f;
    }
    return ans;
}
int Dinic(int s, int t) {
    int ans = 0;
    while (bfs(s, t)) {
        memcpy(cur, head, sizeof(head));
        ans += dfs(s, t, INF);
    }
    return ans;
}
int main() {
    memset(head, -1, sizeof(head));
    scanf("%d%d", &n, &m);
    int a, b;
    while (~scanf("%d%d", &a, &b)) {
        add(a, b, 1);
        add(b, a, 0);
    }
    ss = 0, tt = n + 1;
    for (int i = 1; i <= m; i++) {
        add(ss, i, 1);
        add(i, ss, 0);
    }
    for (int i = m + 1; i <= n; i++) {
        add(i, tt, 1);
        add(tt, i, 0);
    }
    printf("%d\n", Dinic(ss, tt));
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值