洛谷P1092虫食算

洛谷P1092虫食算

传送门难度
https://www.luogu.com.cn/problem/P1092提高+/省选-

这是一道暴力回溯+剪枝的题目。
这道题目的坑是真的多。尝试的时候出现了好多次50、70、80的情况,卡TLE了。

暴力回溯顺序

  1. 开始的时候我使用的是从A到第N个字母遍历的顺序,结果发现这样做会导致超时,然后换成了下面这种遍历顺序:
    在这里插入图片描述

剪枝策略

  1. 利用最高位不会有进位,得到第1个剪枝策略,即str1和str2的最高位相加的和≥N时被剪枝:
alp[temstr1[0]] + alp[temstr2[0]] >= n
  1. 利用题中加法进位只可能为0或1的特点,得到第2个剪枝策略,即str1和str2的对应位相加的和模N恒等于str3对应位的值(或str3对应位的值+1),不满足时剪枝:
(tem1 + tem2) % n != tem3 && (tem1 + tem2 + 1) % n != tem3

使用以上的剪枝策略进行回溯就可以AC了。
以下是完整代码,需要注意的是,这里有个坑,进行回溯的时候,从n-1往前回溯可以,从0往后回溯会有2个测试点TLE(代码中给出了强调)。这个可能跟数据有关吧。

#include<iostream>
#include<stdio.h>
#include<cstring>

using namespace std;

int n;
int alp[30];//每个字母所对应的数字,0存A的,1存B的……
bool flag[30];//记录数字是否已被使用
bool alpuseflag[30];//生成nextalp时使用
int nextalp[30];//从n-1到0蛇形扫描时下一个字母所在的位置
char str1[30], str2[30], str3[30];//字符串1,字符串2,字符串3
int temstr1[30], temstr2[30], temstr3[30];//字符串每一位-'A'后的值
bool over = false;//结束标志
int cnt = 0;//辅助next


bool check() {
	int stepon = 0;
	int temsum = 0;
	int temc = 0;
	for (int i = n - 1; i >= 0; --i) {
		temsum = alp[temstr1[i]] + alp[temstr2[i]] + stepon;
		temc = temsum % n;
		if (temc != alp[temstr3[i]]) {
			return false;
		}
		temsum -= n;
		stepon = temsum >= 0 ? 1 : 0;
	}
	return true;
}


bool canPrune() {//剪枝策略
	if (over)
		return true;

	if (alp[temstr1[0]] + alp[temstr2[0]] >= n)
		return true;

	for (int i = n - 1; i >= 0; --i) {
		if (alp[temstr1[i]] == -1 || alp[temstr2[i]] == -1 || alp[temstr3[i]] == -1)
			continue;
		int tem1 = alp[temstr1[i]];
		int tem2 = alp[temstr2[i]];
		int tem3 = alp[temstr3[i]];
		if ((tem1 + tem2) % n != tem3 && (tem1 + tem2 + 1) % n != tem3)
			return true;
	}
	return false;
}


void createNext(int index) {//蛇形顺序枚举
	if (!alpuseflag[index]) {
		alpuseflag[index] = true;
		nextalp[cnt++] = index;
	}
}


void pr() {
	for (int i = 0; i < n - 1; ++i)
		printf("%d ", alp[i]);
	printf("%d\n", alp[n - 1]);
	over = true;
	return;
}


void recur(int current) {
	if (canPrune())
		return;
	if (current == n)
		if (check())
			pr();
		else
			return;
	//for (int i = 0; i < n; ++i) {   这样写会导致超时,只能得80分!!!!!!!
	for (int i = n-1; i >= 0; --i) {  //这样写可以AC!!!!!!!!
		if (flag[i])
			continue;
		alp[nextalp[current]] = i;
		flag[i] = true;
		recur(current + 1);
		if (over)return;
		alp[nextalp[current]] = -1;
		flag[i] = false;
	}
}


void recurin() {
	recur(0);
}


int main() {
	while (scanf("%d", &n) != EOF) {
		over = false;
		memset(flag, 0, sizeof(bool) * 30);
		cnt = 0;
		for (int i = 0; i < 30; ++i) {
			alp[i] = -1;
			alpuseflag[i] = false;
			nextalp[i] = -1;
		}
		scanf("%s%s%s", str1, str2, str3);
		for (int i = n - 1; i >= 0; --i) {
			temstr1[i] = str1[i] - 'A';
			temstr2[i] = str2[i] - 'A';
			temstr3[i] = str3[i] - 'A';
		}
		for (int i = n - 1; i >= 0; --i) {
			createNext(temstr1[i]);
			createNext(temstr2[i]);
			createNext(temstr3[i]);
		}
		recurin();
	}
	return 0;
}

还有一个使用高斯消元的解法,以后补吧。

题目描述似乎缺失了关键信息,通常我会需要了解“P10780 食物”是什么具体的算法竞赛题目,它来自在线平台洛谷(Luogu),以及该题目的大致背景、条件和目标。洛谷食物(Food)可能是某种数据结构或算法问题,比如贪吃蛇、分配任务等。 然而,我可以给你提供一个通用的模板: **[洛谷 P10780 食物 - 题目解析]** 题目名称:P10780 食物(假设是关于食物分配或者饥饿游戏的问题) 链接:[插入实际题目链接] **背景:** 此题通常涉及动态规划或者搜索策略。场景可能是有n个参与者(选手或角色),每个都有特定的食物需求或者优先级,我们需要在有限的食物资源下合理分配。 **分析:** 1. **输入理解**:首先读入n个参与者的信息,包括每个人的需求量或优先级。 2. **状态定义**:可以定义dp[i][j]表示前i个人分配完成后剩余的食物能满足第j个人的最大程度。 3. **状态转移**:递推式可能涉及到选择当前人分配最多食物的版本,然后更新剩余的食物数。 4. **边界条件**:如果剩余食物不足以满足某人的需求,则考虑无法分配给他;如果没有食物,状态值设为0。 5. **优化策略**:可能需要对状态数组进行滚动更新,以减少空间复杂度。 **代码示例(伪代码或部分关键代码片段):** ```python # 假设函数分配_food(demand, remaining)计算分配给一个人后剩余的食物 def solve(foods): dp = [[0 for _ in range(max_demand + 1)] for _ in range(n)] dp = foods[:] # 从第一个到最后一个参与者处理 for i in range(1, n): for j in range(1, max_demand + 1): if dp[i-1][j] > 0: dp[i][j] = max(dp[i][j], dp[i-1][j] - foods[i]) dp[i][j] = max(dp[i][j], distribute_food_to(i, dp[i-1][j])) return dp[n-1][max_demand] ``` **相关问题--:** 1. 这道题是如何运用动态规划的? 2. 如果有优先级限制,应该如何调整代码? 3. 怎样设计搜索策略来解决类似问题?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值