Pytest框架详解(一)
文章目录
一、概述
目前,在自动化测试中,基于Python语言的自动化框架占比越来越重。原因无外乎Python语法简洁明了,易上手,适合编写测试用例。
在诸多测试框架中,Pytest算得上是鼎鼎大名了(源于Unitest,干翻Unitest)
可能是我的理解有限,我更觉得Pytest是一个自动化测试用例管理框架。
- 使用文件系统目录层次对应测试用例层次结构
- 灵活的初始化清除机制,简洁的断言语法
- 可以任意挑选希望执行的用例或目录
- 丰富的第三方插件,如Allure,pytest-rerunfailures等等
- 直接使用装饰器实现参数化,数据驱动
Pytest框架是一个功能丰富,完整而成熟的自动化框架,笔者也并未全盘掌握,这里主要介绍常用功能,日常工作已足够使用。
更多的功能,api都可以去pytest官方文档去查询,点击前往-官方文档,不过这个是英文的。
给大家找了个中文翻译的文档,点击前往-中文文档
二、安装与入门
首先,既然是基于Python的测试框架,当然要安装Python,此外最好Pycharm也安装一个,这样码代码可以起飞~~
在Python环境安装好后,在命令行直接输入
# -U表示升级安装至最新版
pip install -U pytest
然后使用pytest --version
可以查看已安装的版本号
以下内容均在pytest 6.2.2,python3.7.9下实现。
1、快速上手
Pytest作为一个框架,我们可以把他理解成一个做房子(自动化项目)用的工具箱(框架),想要用这个工具箱(框架)搭出一个房子(自动化项目),就得先知道工具箱(框架)中的工具(API)都是怎样使用的。
使用规则:
- pytest会从当前目录开始递归查找所有
test_*.py
或*_test.py
的文件。所以,文件都得test开头或test结尾,这里推荐大家采用test_*.py
格式编写文件。 - 如果命令行参数,指定了目录、文件名等,就按参数来找。
2、第一个测试
用四行代码创建一个简单的测试。新建test_sample.py
文件
# content of test_sample.py
def func(x):
return x + 1
def test_answer():
assert func(3) == 5
现在就可以执行pytest了。
如果你是使用的pycharm,在test开头的函数前,会有一个单个运行按钮:
直接点击即可运行,或者在当前目录的命令行输入pytest
,也可运行
运行结果:
[100%]是指运行所有测试用例的总体进度。
完成后,pytest会显示一个失败报告,因为assert
断言不成立
Pytest中用例的检查点是直接使用Python的assert断言
assert后面的表达式结果为True,就是检查点通过,结果为False,就是检查点不通过。
3、python代码调用pytest
在上一节中,我们使用命令行模式或pycharm进行的用例执行。
实际工作中中,我们通常使用代码直接调用pytest。
python直接调用pytest的方法是pytest.main()
。
这个就像从命令行输入pytest
,还可以传入参数,用[]列表传入。
pytest.main(["-s"])
案例如下:
import pytest
class Test_demo01:
def test_001(self):
print('用例001')
assert 1 == 1
def test_002(self):
print('用例002')
assert 2 == 3
if __name__ == '__main__':
pytest.main([])
4、命令行参数
上一节,有的童鞋可能发现了,我在pytest.main(["-s"])
中传入了"-s"的参数,先说明pytest.main(["-s"])
是代码形式的,和命令行的pytest -s
是一样的。接下来,讲解一下这些参数。
-
pytest -v
可以输出用例更加详细的执行信息,比如用例所在的文件及用例名称等。
-
pytest -s
输出用例的调试信息,比如
print
的打印信息等。 -
pytest -m
用来标记测试并分组,执行特定的测试用例,这个需要和pytest标记功能搭配使用。
-
pytest --1f
这个参数还是比较有用的,当用例执行完成后,如果有失败的用例,这个命令就会让失败的用例重新运行一次。
-
pytest --ff
这个参数和上一个很像,作用也很像,当使用这个参数后,失败的用例会首先执行,剩余的用例也会再次执行一次。
pytest
命令行参数有10大类共133个,可以在命令行直接执行pytest -h
查看,不过是全英文的~~~
5、初始化清除机制
Pytest提供了
模块级、函数级、类级、方法级
的setup/teardown。setup是前置,在用例/用例集执行之前运行。
teardown是后置,在用例/用例集执行之后运行。
现实场景中,会根据需要,在某些用例之前执行一些操作。
比如购买商品,只能在登录后进行,查看购买记录也需要登录后进行。这样,我们就可以把登录账号当成前置
,相关执行完毕后,需要注销账号,那注销账号就是后置
。
5.1模块级
模块级setup_module/teardown_module
开始于模块(自身文件)始末,作用全局,始末只执行一次。
示例代码:
import pytest
def setup_module():
print('\n ===== 初始化-模块 =====')
def teardown_module():
print('\n ===== 清除-模块 =====')
class Test_001:
def test_001(self):
print('用例001')
assert 1 == 1
def test_002(self):
print('用例002')
assert 2 == 2
if __name__ == '__main__':
pytest.main(["-sv"])
结果显示如下:
可以看到,模块级初始化在整个模块运行前执行,清除则在模块运行后执行。
5.2函数级
函数级setup_function/teardown_function
开始于外部每个函数始末执行一次。
示例代码:
import pytest
def setup_function():
print("\n===每个函数用例开始前执行setup_function===")
def teardown_function():
print("===每个函数用例结束后执行teardown_function===")
def test_one():
print("第一个用例")
def test_two():
print("第二个用例")
if __name__ == '__main__':
pytest.main(["-s", "-v"])
结果显示如下:
可以看到,函数级初始化在每个函数运行前执行,清除则在函数运行后执行。
5.3类级别和方法级
由于类级别和方法级的初始化和清除放在一起比较直观,我就写在一起了。
类级别setup_class/teardown_class
在当前类运行始末执行一次。
方法级setup_method/teardown_method
在类中每一个方法运行前后执行一次。
示例代码:
import pytest
class TestCase():
def setup_class(self):
print("\n===整个测试类开始前只执行一次setup_class===")
def teardown_class(self):
print("===整个测试类结束后只执行一次teardown_class===")
def setup_method(self):
print("\n===类里面每个用例执行前都会执行setup_method===")
def teardown_method(self):
print("===类里面每个用例结束后都会执行teardown_method===")
def test_three(self):
print("第三个用例")
def test_four(self):
print("第四个用例")
if __name__ == '__main__':
pytest.main(["-s", "-v"])
显示结果如下:
可以看到,类级别的,在类里面的所有用例运行前执行setup_class
初始化,运行后执行teardown_class
清除。
方法级的,是在类其中,每个方法运行前执行setup_method
初始化,运行后执行teardown_method
清除。
三、结语
本次我们学习了Pytest的安装,入门,怎样使用python代码直接调用框架,命令行参数,初始化与清除。
下一次我们讲一下pytest更厉害的功能,比如怎么根据需要执行某些用例,某些目录下的用例;怎么实现参数化,数据驱动;怎样处理用例间存在的依赖关系等。