孤鸿末子
码龄6年
关注
提问 私信
  • 博客:40,510
    40,510
    总访问量
  • 90
    原创
  • 1,742,506
    排名
  • 19
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:上海市
  • 加入CSDN时间: 2018-07-30
博客简介:

qq_42832437的博客

查看详细资料
个人成就
  • 获得28次点赞
  • 内容获得11次评论
  • 获得91次收藏
创作历程
  • 1篇
    2023年
  • 1篇
    2022年
  • 43篇
    2021年
  • 53篇
    2020年
成就勋章
TA的专栏
  • java多线程
    1篇
  • 大数据开发
  • 笔记
    30篇
  • 机器学习
    5篇
  • 工具总结
    1篇
  • 计算机视觉
    7篇
  • 学习之路
  • 学习考研
    47篇
  • 考研复试春招
    1篇
  • 考研数据结构
    3篇
兴趣领域 设置
  • 人工智能
    opencv语音识别计算机视觉机器学习深度学习tensorflowpytorch图像处理数据分析
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

176人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

小红书20230326暑假实习笔试

小明学会了一种加密方式。他定义suc(x)为x在字母表中的后继,例如a的后继为b,b的后继为c… (即按字母表的顺序后一个)。特别的,z的后继为a。对于一个原字符串S,将其中每个字母x都替换成其三重后继,即suc(suc(suc(x)))的字母,即完成了加密。例如,abc加密后变成def (suc(suc(suc(a)))=d suc(suc(suc(b)))=e, suc(suc(suc©))=f)。现在小明知道一个加密后的字符串S’,想请你找出他的原串S。输入数据3def输出数据abc。
原创
发布博客 2023.03.27 ·
1991 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

深入浅出java并发多线程

java多线程
原创
发布博客 2022.10.17 ·
307 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

百度人像分割API

配置API的视频教程在这里。建议看视频,视频里的很详细。视频教程百度Ai平台链接这是最后的代码代码和教程的代码一样import requestsimport base64import cv2import numpy as npimport base64from PIL import Image'''人像分割'''file_path = 'F:/630/images/test/4.jpg'img = Image.open(file_path)width = img.wid
原创
发布博客 2021.09.11 ·
1385 阅读 ·
2 点赞 ·
1 评论 ·
2 收藏

直方图

学习目标掌握图像的直方图计算和显示了解掩膜的应用熟悉直方图均衡化,了解自适应均衡化1 灰度直方图1.1 原理直方图是对数据进行统计的一种方法,并且将统计值组织到一系列实现定义好的 bin 当中。其中, bin 为直方图中经常用到的一个概念,可以译为 “直条” 或 “组距”,其数值是从数据中计算出的特征统计量,这些数据可以是诸如梯度、方向、色彩或任何其他特征。图像直方图(Image Histogram)是用以表示数字图像中亮度分布的直方图,标绘了图像中每个亮度值的像素个数。这种直
原创
发布博客 2021.09.09 ·
1353 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

图像平滑

学习目标了解图像中的噪声类型了解平均滤波,高斯滤波,中值滤波等的内容能够使用滤波器对图像进行处理1 图像噪声由于图像采集、处理、传输等过程不可避免的会受到噪声的污染,妨碍人们对图像理解及分析处理。常见的图像噪声有高斯噪声、椒盐噪声等。1.1 椒盐噪声椒盐噪声也称为脉冲噪声,是图像中经常见到的一种噪声,它是一种随机出现的白点或者黑点,可能是亮的区域有黑色像素或是在暗的区域有白色像素(或是两者皆有)。椒盐噪声的成因可能是影像讯号受到突如其来的强烈干扰而产生、类比数位转换器或位元传输错误等。例如
原创
发布博客 2021.09.09 ·
1850 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

形态学操作

学习目标理解图像的邻域,连通性了解不同的形态学操作:腐蚀,膨胀,开闭运算,礼帽和黑帽等,及其不同操作之间的关系1 连通性在图像中,最小的单位是像素,每个像素周围有8个邻接像素,常见的邻接关系有3种:4邻接、8邻接和D邻接。分别如下图所示:4邻接:像素p(x,y)的4邻域是:(x+1,y);(x-1,y);(x,y+1);(x,y-1),用N4(p)N_4(p)N4​(p)表示像素p的4邻接D邻接:像素p(x,y)的D邻域是:对角上的点 (x+1,y+1);(x+1,y-1)
原创
发布博客 2021.09.09 ·
1441 阅读 ·
2 点赞 ·
0 评论 ·
6 收藏

几何变换

1 图像缩放缩放是对图像的大小进行调整,即使图像放大或缩小。APIcv2.resize(src,dsize,fx=0,fy=0,interpolation=cv2.INTER_LINEAR)参数:src : 输入图像dsize: 绝对尺寸,直接指定调整后图像的大小fx,fy: 相对尺寸,将dsize设置为None,然后将fx和fy设置为比例因子即可interpolation:插值方法,示例import cv2 as cv# 1. 读取图片img1 = cv.i
原创
发布博客 2021.09.05 ·
158 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Opencv图像处理

01、几何变换02、形态学操作03、图像平滑04、直方图05、边缘检测06、模板匹配和霍夫变换
原创
发布博客 2021.09.04 ·
144 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

opencv基本操作

一、opencv简介1 图像的起源1.1 图像是什么图像是人类视觉的基础,是自然景物的客观反映,是人类认识世界和人类本身的重要源泉。“图”是物体反射或透射光的分布,“像“是人的视觉系统所接受的图在人脑中所形版的印象或认识,照片、绘画、剪贴画、地图、书法作品、手写汉学、传真、卫星云图、影视画面、X光片、脑电图、心电图等都是图像。—姚敏. 数字图像处理:机械工业出版社,2014年。1.2 模拟图像和数字图像图像起源于1826年前后法国科学家Joseph Nicéphore Niépce发明的第一
原创
发布博客 2021.09.04 ·
1847 阅读 ·
4 点赞 ·
0 评论 ·
17 收藏

图像处理

01、opencv基本操作02、OpenCV图像处理03、图像特征提取与描述04、视频操作
原创
发布博客 2021.09.04 ·
113 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

计算机视觉

图像处理
原创
发布博客 2021.09.04 ·
134 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

非监督学习之k-means

K-means通常被称为劳埃德算法,这在数据聚类中是最经典的,也是相对容易理解的模型。算法执行的过程分为4个阶段。首先,随机设K个特征空间内的点作为初始的聚类中心。然后,对于根据每个数据的特征向量,从K个聚类中心中寻找距离最近的一个,并且把该数据标记为这个聚类中心。接着,在所有的数据都被标记过聚类中心之后,根据这些数据新分配的类簇,通过取分配给每个先前质心的所有样本的平均值来创建新的质心重,新对K个聚类中心做计算。最后,计算旧和新质心之间的差异,如果所有的数据点从属的聚类中心与上一次的分配的类簇没
原创
发布博客 2021.09.04 ·
168 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

回归算法之岭回归

具有L2正则化的线性最小二乘法。岭回归是一种专用于共线性数据分析的有偏估计回归方法,实质上是一种改良的最小二乘估计法,通过放弃最小二乘法的无偏性,以损失部分信息、降低精度为代价获得回归系数更为符合实际、更可靠的回归方法,对病态数据的拟合要强于最小二乘法。当数据集中存在共线性的时候,岭回归就会有用。sklearn.linear_model.Ridgeclass sklearn.linear_model.Ridge(alpha=1.0, fit_intercept=True, normalize=False
原创
发布博客 2021.09.04 ·
1231 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

回归算法之线性回归

线性回归的定义是:目标值预期是输入变量的线性组合。线性模型形式简单、易于建模,但却蕴含着机器学习中一些重要的基本思想。线性回归,是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,运用十分广泛。优点:结果易于理解,计算不复杂缺点:对非线性的数据拟合不好适用数据类型:数值型和标称型对于单变量线性回归,例如:前面房价例子中房子的大小预测房子的价格。f(x)=w1∗x+w0f(x) = w_1*x+w_0f(x)=w1​∗x+w0​,这样通过主要参数w1w_1w1
原创
发布博客 2021.09.04 ·
1195 阅读 ·
0 点赞 ·
0 评论 ·
10 收藏

回归算法

01、线性回归02、岭回归
原创
发布博客 2021.09.04 ·
108 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

随机森林

在机器学习中,随机森林是一个包含多个决策树的分类器,并且其输出的类别是由个别树输出的类别的众数而定。利用相同的训练数搭建多个独立的分类模型,然后通过投票的方式,以少数服从多数的原则作出最终的分类决策。例如, 如果你训练了5个树, 其中有4个树的结果是True, 1个数的结果是False, 那么最终结果会是True.在前面的决策当中我们提到,一个标准的决策树会根据每维特征对预测结果的影响程度进行排序,进而决定不同的特征从上至下构建分裂节点的顺序,如此以来,所有在随机森林中的决策树都会受这一策略影响而构
原创
发布博客 2021.09.03 ·
252 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

逻辑回归

逻辑回归(Logistic Regression),简称LR。它的特点是能够是我们的特征输入集合转化为0和1这两类的概率。一般来说,回归不用在分类问题上,因为回归是连续型模型,而且受噪声影响比较大。如果非要应用进入,可以使用逻辑回归。了解过线性回归之后再来看逻辑回归可以更好的理解。优点:计算代价不高,易于理解和实现缺点:容易欠拟合,分类精度不高适用数据:数值型和标称型逻辑回归对于回归问题后面会介绍,Logistic回归本质上是线性回归,只是在特征到结果的映射中加入了一层函数映射,即先把特征线性
转载
发布博客 2021.09.03 ·
191 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

朴素贝叶斯

朴素贝叶斯(Naive Bayes)是一个非常简单,但是实用性很强的分类模型。朴素贝叶斯分类器的构造基础是贝叶斯理论。概率论基础概率定义为一件事情发生的可能性。事情发生的概率可以 通过观测数据中的事件发生次数来计算,事件发生的概率等于改事件发生次数除以所有事件发生的总次数。举一些例子:扔出一个硬币,结果头像朝上某天是晴天某个单词在未知文档中出现我们将事件的概率记作P(X)P\left({X}\right)P(X),那么假设这一事件为X属于样本空间中的一个类别,那么0≤P(X)≤10\le{P
原创
发布博客 2021.09.02 ·
135 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

k-近邻算法(k-nn)

k-近邻算法采用测量不同特征值之间的距离来进行分类优点:精度高、对异常值不敏感、无数据输入假定缺点:计算复杂度高、空间复杂度高使用数据范围:数值型和标称型一个例子弄懂k-近邻电影可以按照题材分类,每个题材又是如何定义的呢?那么假如两种类型的电影,动作片和爱情片。动作片有哪些公共的特征?那么爱情片又存在哪些明显的差别呢?我们发现动作片中打斗镜头的次数较多,而爱情片中接吻镜头相对更多。当然动作片中也有一些接吻镜头,爱情片中也会有一些打斗镜头。所以不能单纯通过是否存在打斗镜头或者接吻镜头来判断影片的类别
翻译
发布博客 2021.09.02 ·
198 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

分类算法

1.k-近邻算法2.贝叶斯分类3.决策树与随机森林4.逻辑回归5.支持向量机
原创
发布博客 2021.09.02 ·
114 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏
加载更多