题目内容:
美国数学家维纳(N.Wiener)智力早熟,11岁就上了大学。他曾在1935~1936年应邀来中国清华大学讲学。一次,他参加某个重要会议,年轻的脸孔引人注目。于是有人询问他的年龄,他回答说:“我年龄的立方是一个4位数。我年龄的4次方是一个6位数。这
10个数字正好包含了从0到9这10个数字,每个都恰好出现1次。”请你编程算出他当时到底有多年轻。
【解题思路】:因为已知年龄的立方是一个4位数字,所以可以推断年龄的范围在10到22之间,因此确定穷举范围为10到22。如果年龄还满足“年龄的4次方是一个6位数”这个条件,则先计算年龄的立方值的每一位数字,从低位到高位分别保存到变量b1,b2,b3,b4
中,再计算年龄的4次方值的每一位数字,从低位到高位分别保存到变量a1,a2,a3,a4,a5,a6中。如果上述10个数字互不相同,则必定是包含了从0到9这10个数字并且每个都恰好出现1次,因此只要判断上述10个数字互不相同,即可确定这个年龄值为所求。
输出格式:“age=%d\n”
为避免出现格式错误,请直接拷贝粘贴题目中给的格式字符串和提示信息到你的程序中
#include <stdio.h>
#include <stdlib.h>
int main()
{
int i,j,k,temp,b1,b2,b3,b4,a1,a2,a3,a4,a5,a6;
for(i=10;i<22;i++)
{
if( (j = pow(i,3)) > 1000 && j < 9999 && (k = pow(i,4)) > 100000 && k < 999999)
{
temp = j;
b1 = temp % 10;
temp/=10;
b2 = temp % 10;
temp/=10;
b3 = temp % 10;
temp/=10;
b4 = temp;
temp = k;
a1 = temp % 10;
temp/=10;
a2 = temp % 10;
temp/=10;
a3 = temp % 10;
temp/=10;
a4 = temp % 10;
temp/=10;
a5 = temp % 10;
temp/=10;
a6 = temp;
//printf("%d %d %d\n",i,j,k);
//printf("%d %d %d %d\n",b4,b3,b2,b1);
//printf("%d %d %d %d %d %d\n",a6,a5,a4,a3,a2,a1);
if(a1!=a2 && a1!=a3 && a1!=a4 && a1!=a5 && a1!=a6 && a1!=b1 && a1!=b2 && a1!=b3 && a1!=b4 && a2!=a3 && a2!=a4 && a2!=a5 && a2!=a6 &&
a2!=b1 && a2!=b2 && a2!=b3 && a2!=b4 && a3!=a4 && a3!=a5 && a3!=a6 && a3!=b1 && a3!=b2 && a3!=b3 && a3!=b4 && a4!=a5 && a4!=a6 && a4!=b1 &&
a4!=b1 && a4!=b2 && a4!=b3 && a4!=b4 && a5!=a6 && a5!=b1 && a5!=b2 && a5!=b3 && a5!=b4 && a6!=b1 && a6!=b2 && a6!=b3 && a6!=b4 &&
b1!=b2 && b1!=b3 && b1!=b4 && b2!=b3 && b2!=b4 && b3!=b4 )
printf("age=%d\n",i);
}
}
system("pause");
return 0;
}