【bzoj3328】PYXFIB【单位根反演】【矩阵快速幂】

传送门

入门小板子~

令F(i)表示斐波那契第i项,则所求即为

\sum_{i=0}^{n}\binom{n}{i}F(i)[k|i]

=\sum_{i=0}^n\binom{n}{i}F(i)\frac{1}{k}\sum_{j=0}^{k-1}\omega_{k}^{ij}

=\frac{1}{k}\sum_{i=0}^n\sum_{j=0}^{k-1}\binom{n}{i}F(i)(\omega_k^j)^i

都知道斐波那契可以矩阵快速幂求,而这道题最开始那个组合数和斐波那契加起来正好是一个二项式展开形式。

所以我们大可以用矩阵来表示这个东东。

A=\begin{bmatrix} 1 & 1\\ 1 & 0 \end{bmatrix}即初始矩阵,I=\begin{bmatrix} 1 &0 \\ 0& 1 \end{bmatrix}即单位矩阵,则这个二项式就是(A+I)^n的展开形式。

原式如果这样表示:

=\frac{1}{k}\sum_{i=0}^n\sum_{j=0}^{k-1}\binom{n}{i}A^i(\omega_k^j)^i

我们发现可以合并后两项。

=\frac{1}{k}\sum_{i=0}^n\sum_{j=0}^{k-1}\binom{n}{i}(A\omega_k^j)^i

所以所求即为

\frac{1}{k}\sum_{j=0}^{k-1}(A\omega_k^j+I)^n

咕。

#include<bits/stdc++.h>
using namespace std;
#define in read()
#define int long long
int in{
	int cnt=0,f=1;char ch=0;
	while(!isdigit(ch)){
		ch=getchar();if(ch=='-')f=-1;
	}
	while(isdigit(ch)){
		cnt=cnt*10+ch-48;
		ch=getchar();
	}return cnt*f;
}
int mod,n,k,g,w;
int fac[233],cnt;
int ksm(int a,int b){
	int sum=1;
	while(b){
		if(b&1)sum=sum*a%mod;a=a*a%mod;b>>=1;
	}return sum;
}
void getg(){
	cnt=0;int x=mod-1;
	for(int i=2;i*i<=mod;i++){
		if(x%i==0){
			fac[++cnt]=i;
			while(x%i==0)x/=i;
		}
	}if(x>1)fac[++cnt]=x;
	for(int i=2;;i++){
		int flag=1;
		for(int j=1;j<=cnt;j++){
			if(ksm(i,(mod-1)/fac[j])==1){
			
				flag=0;break;
			}
		}
		if(flag){
			g=i;return;
		}
	}
}
struct node{
	int a[3][3];
	node operator *(const node &b){
		node ans;memset(ans.a,0,sizeof(ans));
		for(int i=1;i<=2;i++){
			for(int j=1;j<=2;j++){
				for(int k=1;k<=2;k++){
					ans.a[i][j]=(ans.a[i][j]+a[i][k]*b.a[k][j]%mod)%mod;
				}
			}
		}return ans;
	}
	node operator +(const node &b){
		node c;memset(c.a,0,sizeof(c.a));
		for(int i=1;i<=2;i++){
			for(int j=1;j<=2;j++)c.a[i][j]=(a[i][j]+b.a[i][j])%mod;
		}
		return c;
	}
};
node I;
node operator *(const node &a,const int &b){
	node c;memset(c.a,0,sizeof(c.a));
	for(int i=1;i<=2;i++)for(int j=1;j<=2;j++)c.a[i][j]=a.a[i][j]*b%mod;
	return c;
}

node jzksm(node a,int b){
	node sum=I;
	while(b){
		if(b&1)sum=sum*a;
		a=a*a;b>>=1;
	}return sum;
}int ans;
signed main(){
	int t=in;I.a[2][2]=I.a[1][1]=1;
	while(t--){
		n=in;k=in;mod=in;getg();//cout<<g<<endl;
		ans=0;
		w=ksm(g,(mod-1)/k);
		for(int i=0,t=1;i<k;i++,t=t*w%mod){
			node A;A.a[1][1]=A.a[2][1]=A.a[1][2]=1;A.a[2][2]=0;
			A=jzksm(A*t+I,n);
			ans=(ans+A.a[1][1])%mod;
		}
		ans=ans*ksm(k,mod-2)%mod;cout<<ans<<'\n';
	}
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值