浅谈数论函数

数论函数

什么是数论函数?

定义域在正整数的函数。(下文如无特殊说明均为数论函数)

积性函数

什么是积性函数?

积性函数即满足这个性质的数论函数:

f(n)=f(a)f(b)[gcd(a,b)=1,ab=n],人话说就是只要互质,可以乘除的就是积性函数。

可以看出任何积性函数的第1项都是1。否则不满足f(1)=f(1)f(1)

而完全积性函数就是:

f(n)=f(a)f(b)[ab=n],人话说就是没有条件,完全可以乘除。

只要能满足这样的东西就行。

几个常见的积性函数

1.莫比乌斯函数\mu的取值后面再说

2.欧拉函数\varphi(n)=\sum_{i=1}^n[gcd(i,n)=1]表示1~i这些正整数中和i互质的数的个数。

3.除数函数\sigma_k(n)=\sum_{d|n}d^k表示n的所有约数的k次方和。

引申出来有d(n)=\sigma_0(n),\sigma(n)=\sigma_1(n),即d函数表示该数约数个数,sigma函数表示该数约数和。

4.单位函数:e(n)=\epsilon(n)=[n=1],即n=1(红字性质)时等于1,反之为0.后面那个叫艾普西隆,英文epsilon。

5.为了方便定义的函数:I(n)=1,Id(n)=n;下文有用。

狄利克雷卷积

狄利克雷卷积是一种运算方式(吧)?对于乘法性狄利克雷卷积,它的性质就是:

(f*g)(x)=\sum_{d|x}f(d)g(\frac{x}{d})

注意*表示“卷”而不是乘。乘法表示是什么都不写或者·或者x。

人话说就是,两个积性函数指定项的卷积即枚举其因数,用第一个函数的因数项和另一个函数的另一个因数项相乘再求和。

满足的性质

1.交换律:f*g=g*f

2.结合律:f*g*h=f*(g*h)

3.分配律:f*(g+h)=f*g+f*h

4.单位元:f*\epsilon=\epsilon*f=f,即任何积性函数卷积艾普西隆就是自己。

常见的狄利克雷卷积

1.约数个数

d(n)=I(n)*I(n)=\sum_{d|n}I(d)I(\frac{n}{d})=\sum_{d|n}1

2.约数和

\sigma_1(n)=I(n)*Id(n)=\sum_{d|n}I(d)Id(\frac{n}{d})=\sum_{d|n}d

3.莫比乌斯函数的定义

\mu(n)*I(n)=\epsilon(n)

\sum_{d|n}\mu(d)=[n=1]

4.Id函数由欧拉函数所得的卷积

试证明

n=Id(n)=\varphi(n)*I(n)=\sum_{d|n}\varphi(d)

设有n个分数分别是

\frac{1}{n},\frac{2}{n},\frac{3}{n}...\frac{n-1}{n},\frac{n}{n}

其中有的分数可以约分为最简分数。可以看出约分后的分母是n的约数

且由于这时这个分母与分子互质且这个分母比n小,所以对于每个分母a会出现\varphi(a)次。

所以

n=Id(n)=\sum_{d|n}\varphi(d)

5.欧拉函数的一种卷积方式

试证明

\varphi=\mu*Id

由4得

Id=\varphi*I

\mu*Id=\varphi*(I*\mu)

\because\mu*I=\epsilon

\therefore\mu*Id=\varphi

莫比乌斯反演的本质

狄利克雷卷积的最大特点就是这样的函数都可以线性筛求出来。有了狄利克雷卷积,我们就可以说说莫比乌斯反演的本质了。

形如

g(n)=\sum_{d|n}f(d)=f(n)*I(n)

g=f*I

\therefore\mu*g=f*I*\mu

\therefore\mu*g=f

\therefore f(n)=\sum_{d|n}\mu(d)g(\frac{n}{d})这才是真正的证明。

至于后缀和形式,那是另一种证明方式,这里贴一张图上来。(注:图中f与g的意义与本文相反。)

这才是莫比乌斯函数与莫比乌斯反演的意义。要先明确莫比乌斯函数的定义,再谈反演。

更新于2019.2.20

对于有种后缀和形式的莫比乌斯反演,还有更重要的另一种表示方法:

如果f(n)=\sum_{i=1}^N\sum_{j=1}^M[gcd(i,j)=n],N和M是给定常数,则

g(n)=\sum_{n|d}f(d)=\sum_{n|d}\sum_{i=1}^N\sum_{j=1}^M[gcd(i,j)=d]=\sum_{i=1}^N\sum_{j=1}^M[n|gcd(i,j)]=\sum_{i=1}^{\left \lfloor \frac{N}{n}\right \rfloor}\sum_{j=1}^{\left \lfloor \frac{M}{n} \right \rfloor}[1|gcd(i,j)]=\sum_{i=1}^{\left \lfloor \frac{N}{n} \right \rfloor}\sum_{j=1}^{\left \lfloor \frac{M}{n} \right \rfloor}1={\left \lfloor \frac{N}{n} \right \rfloor}{\left \lfloor \frac{M}{n} \right \rfloor}

  • 1
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
在Python中,数论函数可以通过使用一些内置函数和模块来实现。常用的数论函数包括: 1. 判断一个数是否为偶数的函数可以使用取余操作符%和条件判断来实现。例如,定义一个函数is_even(num),如果num是偶数则返回True,否则返回False。 2. 求一个数的平方可以使用乘法操作符**来实现。例如,定义一个函数square(x),返回x的平方。 3. 判断一个数是否为原根的函数可以使用欧拉定理或卢卡斯定理等数论定理来实现。例如,引用中给出了求原根的代码示例,其中使用了pow函数来计算幂次。 4. filter函数可以用来根据指定条件过滤序列中的元素。例如,引用中给出了使用filter函数判断一个数是否为偶数的例子。 5. map函数可以对序列中的每个元素应用一个函数,返回一个新的序列。例如,引用中给出了使用map函数计算平方和进行类型转换的例子。 综上所述,Python提供了丰富的内置函数和模块来处理数论问题,可以根据具体需求选择合适的函数来实现相应的功能。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [数论数论函数](https://blog.csdn.net/tirion_chenrui/article/details/101839033)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *2* *3* [python常用函数或库](https://blog.csdn.net/wenxiaoba/article/details/120463130)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值