bzoj又权限了,但我们有woj
求不包含G的极大子矩阵。
我们使用悬线法来操作。
如果只是求最大答案,那预处理前缀矩阵数组,最左最右端点,高度数组并以此处理极左极右数组,进行O(1)计算即可。
但对于最小面积,很明显,我们求出的极大子矩阵是最大的,所以要缩小。
求包含一个答案的最小矩阵,那二分吧。
做四次二分ouo!
注意
本题坐标从0开始。
#include<bits/stdc++.h>
using namespace std;
#define in read()
#define N 1000
int in{
int cnt=0,f=1;char ch=0;
while(!isdigit(ch)){
ch=getchar();if(ch=='-')f=-1;
}
while(isdigit(ch)){
cnt=cnt*10+ch-48;
ch=getchar();
}return cnt*f;
}
int a[1003][1003],ban[1003][1003],S,h[1003][1003];
int s[1003][1003],ans,maxl[1003][1003],maxr[1003][1003],up[1003][1003],l[1003][1003],r[1003][1003];
int n;
int query(int x1,int y1,int x2,int y2){
return s[x2][y2]-s[x1-1][y2]-s[x2][y1-1]+s[x1-1][y1-1];
}
void update(int x1,int y1,int x2,int y2){
int cnt=query(x1,y1,x2,y2);//if(ans<cnt)cout<<x1<<" "<<y1<<" "<<x2<<" "<<y2<<endl;
if(cnt<ans)return;
int L=x1,R=x2,as=R;
while(L<=R){
int mid=(L+R)>>1;
if(query(x1,y1,mid,y2)==cnt)R=mid-1,as=mid;
else L=mid+1;
}x2=as;
L=x1,R=x2,as=L;
while(L<=R){
int mid=(L+R)>>1;
if(query(mid,y1,x2,y2)==cnt)L=mid+1,as=mid;
else R=mid-1;
}x1=as;
L=y1,R=y2,as=L;
while(L<=R){
int mid=(L+R)>>1;
if(query(x1,mid,x2,y2)==cnt)L=mid+1,as=mid;
else R=mid-1;
}y1=as;
L=y1,R=y2,as=R;
while(L<=R){
int mid=(L+R)>>1;
if(query(x1,y1,x2,mid)==cnt)R=mid-1,as=mid;
else L=mid+1;
}y2=as;if(ans<cnt)ans=cnt,S=(x2-x1)*(y2-y1);
else if(ans==cnt)S=min(S,(x2-x1)*(y2-y1));
}
int main(){
n=in;
for(int i=1;i<=n;i++){
int x=in;int y=in;char ch[3];scanf("%s",ch);if(ch[0]=='H')a[x][y]=1;else ban[x][y]=1;
}
for(int i=0;i<=N;i++){
for(int j=0;j<=N;j++)
s[i][j]=a[i][j]+s[i-1][j]+s[i][j-1]-s[i-1][j-1];
}
// for(int i=0;i<=5;i++){
// for(int j=0;j<=5;j++)cout<<s[i][j]<<" ";cout<<endl;
// }
for(int i=0;i<=N;i++){
int nowl=0;
for(int j=0;j<=N;j++){
if(ban[i][j])nowl=j+1;
else l[i][j]=nowl;
}
}
for(int i=0;i<=N;i++){
int nowr=N;
for(int j=N;j>=0;j--){
if(ban[i][j])nowr=j-1;
else r[i][j]=nowr;
}
}
//for(int i=1;i<=N;i++)for(int j=1;j<=N;j++)cout<<l[i][j]<<" "<<r[i][j]<<endl;
for(int i=0;i<=N;i++){
for(int j=0;j<=N;j++){
if(ban[i][j])continue;h[i][j]=h[i-1][j]+1;
if(h[i][j]==1)maxl[i][j]=l[i][j],maxr[i][j]=r[i][j];
else maxl[i][j]=max(l[i][j],maxl[i-1][j]),maxr[i][j]=min(r[i][j],maxr[i-1][j]);
update(i-h[i][j]+1,maxl[i][j],i,maxr[i][j]);
}
}
// for(int i=0;i<=5;i++){
// for(int j=0;j<=5;j++)cout<<h[i][j]<<" ";cout<<endl;
// }
cout<<ans<<"\n"<<S;
return 0;
}