问题描述
秋天到了,n只猴子采摘了一大堆苹果放到山洞里,约定第二天平分。这些猴子很崇拜猴王孙悟空,所以都想给他留一些苹果。第一只猴子悄悄来到山洞,把苹果平均分成n份,把剩下的m个苹果吃了,然后藏起来一份,最后把剩下的苹果重新合在一起。这些猴子依次悄悄来到山洞,都做同样的操作,恰好每次都剩下了m个苹果。第二天,这些猴子来到山洞,把剩下的苹果分成n分,巧了,还是剩下了m个。问,原来这些猴子至少采了多少个苹果。
方法一:公式计算
此题类似李政道教授的那道猴子分桃算术题,用巧解的方法果然高效美妙。
可设苹果总数为x, 往总数里加(n-1)*m个苹果使y = x + (n-1)*m;第一只猴子吃m个苹果再藏(x-m)*(1/n)个,即第一只猴子共拿了y*(1/n)个苹果,苹果剩(n-1)/n * y,......可以依此类推,最后苹果剩n*一个整数再加m个。(自己动手动脑丰衣足食 :) , 可以假设加一只猴子)
得出公式: x = (n ^ n+1) - ((n - 1) * m)
#include<iostream>
#include<cstring>
#include<cmath>
using namespace std;
int main()
{
int monkey, apple;
long long int sum;
cin >> monkey >> apple;
sum = pow(monkey, monkey + 1) - (monkey - 1)*apple;
cout << sum << endl;
return 0;
}
方法二:直接递推
#include <iostream>
using namespace std;
int main(int argc, char** argv) {
int n, m;
cin>> n>> m;
for(int i = 0, x = 1; ; i++, x = n*i+m){
bool flag = true;
for(int j = 0; j < n ;j++){
if( x%(n-1) ){
flag =false;
break;
}
x = x/(n-1)*n + m;
}
if(flag){
cout<< x<< '\n';
break;
}
}
return 0;
}