OpenCV 灰度直方图

本文介绍了直方图的概念,使用OpenCV和Numpy统计图像直方图的方法,并提供了绘制直方图的两种方式,包括matplotlib.pyplot.hist()和OpenCV的绘图函数。此外,还提及了np.bincount()作为提高统计速度的替代方案,以及后续将探讨的归一化和均衡化直方图以及2D直方图。
摘要由CSDN通过智能技术生成

什么是直方图?

直方图是对图像的另一种解释。通过直方图你可以对整幅图像的灰度分布有一个整体的了解。直方图的x轴是灰度值,y轴是图片中具有统一灰度值得点的数目。

直方图中的两个定义:

  •  BINS:一个小组是一个BIN,如果像素值为0到255,那么你就需要256个数来显示直方图。这就分成了256个组。
    
  • RANGE:要统计的直方图的范围,一般来说[0,256]。
    

使用OpenCV统计直方图:

hist = cv2.calcHist(images. channels. mask, histSize, ranges[, hist[, accumulate]])

  • images:原图,用[]括起来。
  • channels:同样用中括号括起来,若原图是灰度图,则为[0],否则传入的参数可以是[0],[1],[2]代表B,G,R三通道。
  • mask:掩模图像。若统计整幅图像的直方图,则为None
  • histSize:BIN的数目,用中括号括起来。[256]
  • ranges:像素值的范围,通常是[0,256]
# 读取彩色图片的直方图
import cv2 as cv

img = cv.imread("picture\lena.jpg")

color = ['b','g','r&
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值