Problem Description
一个无环的有向图称为无环图(Directed Acyclic Graph),简称DAG图。
AOE(Activity On Edge)网:顾名思义,用边表示活动的网,当然它也是DAG。与AOV不同,活动都表示在了边上,如下图所示:
如上所示,共有11项活动(11条边),9个事件(9个顶点)。整个工程只有一个开始点和一个完成点。即只有一个入度为零的点(源点)和只有一个出度为零的点(汇点)。
关键路径:是从开始点到完成点的最长路径的长度。路径的长度是边上活动耗费的时间。如上图所示,1 到2 到 5到7到9是关键路径(关键路径不止一条,请输出字典序最小的),权值的和为18。
Input
这里有多组数据,保证不超过10组,保证只有一个源点和汇点。输入一个顶点数n(2<=n<=10000),边数m(1<=m <=50000),接下来m行,输入起点sv,终点ev,权值w(1<=sv,ev<=n,sv != ev,1<=w <=20)。数据保证图连通。
Output
关键路径的权值和,并且从源点输出关键路径上的路径(如果有多条,请输出字典序最小的)。
Sample Input
9 11
1 2 6
1 3 4
1 4 5
2 5 1
3 5 1
4 6 2
5 7 9
5 8 7
6 8 4
8 9 4
7 9 2
Sample Output
18
1 2
2 5
5 7
7 9
AC代码:
#include<bits/stdc++.h>
using namespace std;
int path[50001],dis[50001],in[50001],out[50001];
int n,m,ans;
struct node
{
int u,v,w;
} edge[50001];
void Bellman()
{
for(int i=2; i<=n; i++)
{
int flag=0;
for(int j=1; j<=m; j++)
{
if((dis[edge[j].u]<dis[edge[j].v]+edge[j].w)||((dis[edge[j].u]==dis[edge[j].v]+edge[j].w)&&(edge[j].v<path[edge[j].u])))
{
dis[edge[j].u]=dis[edge[j].v]+edge[j].w;
path[edge[j].u]=edge[j].v;
flag=1;
}
}
if(flag==0) break;
}
cout<<dis[ans]<<endl;
while(path[ans]!=0)
{
cout<<ans<<" "<<path[ans]<<endl;
ans=path[ans];
}
}
int main()
{
int u,v,w;
while(cin>>n>>m)
{
memset(path,0,sizeof(path));
memset(dis,0,sizeof(dis));
memset(edge,0,sizeof(edge));
memset(in,0,sizeof(in));
memset(out,0,sizeof(out));
for(int i=1; i<=m; i++)
{
cin>>u>>v>>w;
edge[i].u=u;
edge[i].v=v;
edge[i].w=w;
in[v]++;
out[u]++;
}
for(int i=1; i<=n; i++)
{
if(in[i]==0)
ans=i;
}
Bellman();
}
return 0;
}
————
余生还请多多指教!