一、什么是图?
很简单,点用边连起来就叫做图,严格意义上讲,图是一种数据结构,定义为:graph=(V,E)。V是一个非空有限集合,代表顶点(结点),E代表边的集合。
二、图的一些定义和概念
(a)有向图:图的边有方向,只能按箭头方向从一点到另一点。(a)就是一个有向图。
(b)无向图:图的边没有方向,可以双向。(b)就是一个无向图。
结点的度:无向图中与结点相连的边的数目,称为结点的度。
结点的入度:在有向图中,以这个结点为终点的有向边的数目。
结点的出度:在有向图中,以这个结点为起点的有向边的数目。
权值:边的“费用”,可以形象地理解为边的长度。
连通:如果图中结点U,V之间存在一条从U通过若干条边、点到达V的通路,则称U、V 是连通的。
回路:起点和终点相同的路径,称为回路,或“环”。
完全图:一个n 阶的完全无向图含有n*(n-1)/2 条边;一个n 阶的完全有向图含有n*(n-1)条边;
稠密图:一个边数接近完全图的图。
稀疏图:一个边数远远少于完全图的图。
强连通分量:有向图中任意两点都连通的最大子图。下图中,1-2-5构成一个强连通分量。特殊地,单个点也算一个强连通分量,所以右图有三个强连通分量:1-2-5,4,3。
三、一笔画问题
如果一个图存在一笔画,则一笔画的路径叫做欧拉路,如果最后又回到起点,那这个路径叫做欧拉回路。
我们定义奇点是指跟这个点相连的边数目有奇数个的点。对于能够一笔画的图,我们有以下两个定理。
定理1:存在欧拉路的条件:图是连通的,有且只有2个奇点。
定理2:存在欧拉回路的条件:图是连通的,有0个奇点。
两个定理的正确性是显而易见的,既然每条边都要经过一次,那么对于欧拉路,除了起点和终点外,每个点如果进入了一次,显然一定要出去一次,显然是偶点。对于欧拉回路,每个点进入和出去次数一定都是相等的,显然没有奇点。
四、哈密尔顿环
欧拉回路是指不重复地走过所有路径的回路,而哈密尔顿环是指不重复地走过所有的点,并且最后还能回到起点的回路。