线性DP之背包问题

目录

1,0/1背包问题
2,完全背包问题
3,多重背包问题
4,混合三种背包问题
5,二维费用背包问题
6,分组背包问题
7,有依赖的背包问题
8,求背包问题的方案总数。
9,背包问题的究极分类!!!!!(特别重要也很特别)

1, 01背包问题

集合f[i,j]考虑前i种物品占用容量为j的背包的最大价值
策略:对于任意容量下的背包,考虑当前的i物品只有放入或者不放入两种选择
原始状态转移f[i][k]=max(f[i-1][k],f[i-1][k-space[i]]+w[i]);
抽出一次循环中的转移过程:(如图,只涉及i-1i维)

一维的背包其实就是两条线段的重合,由于循环顺序的特殊性,从最大的背包容量m迭代时,m-w[i](可以假装它还是 i-1的时候的情况,因为这层循环压根没调用它)

以及由于线段重合造成循环的顺序只能从大到小,点的覆盖是其中关键所在

最终的代码:

int w[MAXN],f[MAXN],v[MAXN];

for(int i=1;i<=n;i++)        / /迭代枚举i个物品
	for(int k=m;k>=w[i];k--)/ / 迭代枚举背包容量  
		f[i]=max(f[k],f[k-w[i]]+v[i]);

2,完全背包问题

题面:同样的n件物品,对于每件想取多少就可以取多少
集合f[i,j]考虑前i种物品占用容量为j的背包的最大价值
策略:对于任意容量下的背包,考虑当前的i物可以放几个
原始状态转移f[i,j]=max(f[i-1,j], f[i-1][j-space[i]+w[i] , f[i-1][j-space[i]*2] + 2*w[i] ,...... f[i-1][j-space[i]*k] +k *w[i])
优化藏在数学规律里:

	f[i,j]=max(f[i-1,j], f[i-1][j-space[i]+w[i] , f[i-1][j-space[i]*2] + 2*w[i] , f[i-1][j-space[i]*3] +3 *w[i])  
	先写到3好了,足够说明问题
	
	f[i,j-space[i]]=max(f[i-1,j-space[i]], f[i-1][j-space[i]*2]+w[i] , f[i-1][j-space[i]*3] + 2*w[i])  
	
	 你很惊喜的发现 
	 f[i][j] 需要的:
	 f[i-1][j-space[i]+w[i] , f[i-1][j-space[i]*2] + 2*w[i] , f[i-1][j-space[i]*3] +3 *w[i] 的 max 不就是
	 f[i-1][j-space[i]]  (故意的分开!) +w[i] 吗?

优化的策略依稀有个影子了吧:就是把第三层循环涉及的对个数的枚举无限分割变小,直到只涉及两个,以后再用到就是无数个两个max判断的叠加了;

图片是在桌子上(jx记得把它绘出来啊!!)

最终的代码:

int space[MAXN];
int f[MAXN];
int v[MAXN];

for(int i=1;i<=m;i++)
	for(int k=w[i];k<=m;k++)
		f[i]=max(f[k],f[k-space[i]]+v[i]);  

3,多重背包问题

题面:同样的n件物品,对于每件只能取固定的s件
集合f[i,j]考虑前i种物品占用容量为j的背包的最大价值
策略
1,暴力转01,换个角度思考,其实一共就有n*s件物品可以备选,每件的价值和体积全部已知,01求解就好啦
2,二进制转01,倍增考虑,针对所有的整数,都是可以由2的n次方的无数个数组合出来的,但是这样可以大幅的缩减空间;
举个栗子 :对于可能1000个数目备选的物品,转化为倍增处理的单个背包,只剩10个了

二进制拆包操作:

	for(int i=1;i<=n;i++)                迭代n次表示有n个物品
	{
		cin>>v>>w>>s;                    输入物品的相关数据
		for(int j=1;j<=s;j*=2)           倍增的产生用于合包的物品大小
		{
			s-=j;                        原包的大小一直浮动
			vec.push_back({v*j,w*j});    产生新的物品
		}
		if(s>0)vec.push_back({v*s,w*s});  处理倍增的小尾巴
	}

其余的就和01背包一样啦!
典例 AcWing5. 多重背包问题 II
AC 打卡代码

3,单调队列究极优化

4,混合的三种基础背包问题

策略
1,由三种背包都可以滚动数组优化知,当前维度的物品是与前一个状态下的物品种类完全无关(无后效性得证!)
2,01背包是特殊的完全背包(在完全背包的大前提下可以顺便解决01)
典例AcWing 7. 混合背包问题
AC 打卡代码

5,二维费用背包问题

题面:有 N 件物品和一个容量是 V 的背包,背包能承受的最大重量是 M。每件物品只能用一次。体积是 vi,重量是 mi,价值是 wi。
思考:对于除多出的那一维的单维01,我们就是枚举物品并逆向迭代限制条件,现在的两维可以交换且互不影响,求解第i个物品的体积限制时,顺带也可解决重量限制
结论:只需加入新的一层逆向迭代求解新定义的限制即可

for(int i=1;i<=n;i++)
	{
		cin>>v>>h>>w;
		for(int j=mv;j>=v;j--)                        体积限制迭代  (mv为体积最大值)
			for(int k=mh;k>=h;k--)                    重量限制迭代  (mh为重量最大值)
				f[j][k]=max(f[j][k],f[j-v][k-h]+w);   正常转移即可
	}

典例AcWing 8. 二维费用的背包问题
AC 打卡代码

6,分组背包问题

题面:有n组物品,每组物品有若干个,同一组内的物品最多只能选一个。
策略:把01背包分组之后,只需在正常迭代的内部,加一次迭代,判断该组内能占用j空间的物品(这个前提很重要)中谁比较最优即可

	for(int i=1;i<=n;i++)
		for(int j=m;j>=0;j--)
			for(int k=1;k<=num[i];k++)         分组背包特性性的迭代,判断该组物品选谁最优
				if(j>=v[i][k])f[j]=max(f[j],f[j-v[i][k]]+w[i][k]);   

典例AcWing 9. 分组背包问题
AC 打卡代码

7,有依赖的背包问题

题面:
策略

8,求背包问题的方案总计数以及打印

典例AcWing 9. 分组背包问题
AC 打卡代码

9,背包问题的究极分类!!!!!

就结果而言,分为:方案数,最小值和最大值问题
就转移过程而言,分为:至少型,恰好型,至多型

考虑结果,受到初始化的作用:

  • 1,方案数的f[0]=1表示啥也不选也是一种方案
  • 2,最大值的目的是在第一轮循环的时候借助max,巧妙的不用原数组的数据,那么考虑使用负无穷或0
  • 3,最小值的目的和最大值一致,就是借助min性质,巧妙调开并覆盖元数组数据考虑使用正无穷

考虑转移,受到初始化和转移过程的作用:

恰好型

  • 恰好的时候,f[0]=0 其余的无穷化,因为一个不选且占用空间恰好为0是合法的,其余的都是不合法解,不能用于转移
  • 恰好类型的转移,负数空间不能转移,转移的下界就是0,这是实际意义决定的

至少型

  • 至少类型的转移,f[0]=0 其余的无穷化,因为一个不选且占用空间至少为0是合法的,其余的都是不合法解,不能用于转移
  • 至少类型的转移,负数空间可以转移,转移无下界,这是(至少)的实际意义决定的,由负数转移,说明选取这个物品会使某个数据大于需求值,这是符合至少的需要的

至多型

  • 至多的时候,初始化所有的值为0,空间为0且选取0件物品的价值为0是合法的
  • 其余的就视min还是max决定不合法情况的初始化是无穷大还是无穷小

Y总究极背包总结课,强推!!!!!!!

完结撒花!!! O R Z o r z O T Z W A Q A Q q w q 400 A C p j \sqrt[^{^{400ACpj}}]{\frac{^{{ORZ}_{orz}^{OTZ}}}{_{{WA}_{QAQ}^{qwq}}}} 400ACpjWAQAQqwqORZorzOTZ

  • 2
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

流苏贺风

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值