第一章 绪论
1.1数据结构的基本概念
1.1.1基本概念和术语
1.数据
数据是信息的载体,是描述客观事物属性的数、字符及所有能输入到计算机中并被计算机程序识别和处理的符号的集合。
2.数据元素
数据元素是数据的基本单位,一个数据元素可以由若干个数据项组成,数据项是构成数据元素的不可分割的最小单位。例如学生记录就是一个数据元素,它由学号、姓名、性别等数据项组成。
3.数据对象
数据对象是具有相同性质的数据元素的集合,是数据的一个子集。
4.数据类型
数据类型是一个值的集合和定义在此集合上的一组操作的总称。
原子类型:其值不可再分的数据类型。
结构类型:其值可以再分解为若干成分的数据类型。
抽象数据类型:抽象数据组织及与之相关的操作。
5.数据结构
数据结构是相互之间存在一种或多种特定关系的数据元素的集合。
数据结构包括三方面的内容:逻辑结构、存储结构和数据的运算。
1.1.2数据结构三要素
1.数据的逻辑结构
数据的逻辑结构分为线性结构和非线性结构。
集合。结构中的数据元素之间除“同属一个集合”外,别无其他关系。
线性结构。结构中的数据元素之间只存在一对一的关系。
树形结构。结构中的数据元素之间存在一对多的关系。
图状结构或网状结构。结构中的数据元素之间存在多对多的关系。
2.数据的存储结构
存储结构是指数据结构在计算机中的表示,也称物理结构。它包括数据元素的表示和关系的表示。数据的存储结构主要有 顺序存储、链式存储、索引存储、散列存储。
顺序存储:逻辑相邻的元素存储在物理位置也相邻的存储单元中。优点:可实现随机存取,每个元素占用最少的存储空间。缺点:只能使用相邻的一整块存储单元,因此可能产生较多的外部碎片。
链式存储:逻辑上相邻,物理位置上可以不相邻,借助指示元素存储地址的指针来表示元素之间的逻辑关系。优点:不会出现碎片现象,能充分利用所有存储单元。缺点:每个元素因存储指针而占用额外的存储空间,且只能实现顺序存取。
索引存储:在存储元素信息的同时,还建立附加的索引表。优点:检索速度快。缺点:附加的索引表额外占用存储空间,而且,增加和删除数据时也要修改索引表,花费时间。
散列存储:根据元素的关键字直接计算出该元素的存储地址,又称哈希存储。优点:检索、增加和删除结点的操作都很快。缺点:若散列函数不好,则可能出现元素存储单元的冲突,解决冲突会增加时间和空间开销。
3.数据的运算
施加在数据上的运算包括运算的定义和实现。运算的定义是针对逻辑结构的,指出运算的功能;运算的实现是针对存储结构的,指出运算的具体操作步骤。
1.2算法和算法评价
1.2.1算法的基本概念
算法是对特定问题求解步骤的一种描述,它是指令的有限序列,其中的每条指令表示一个或多个操作。
算法的五个特性:
有穷性、确定性、可行性、输入、输出
好的算法应该考虑达到以下目标:
正确性:能够正确解决求解问题
可读性:具有良好的可读性,以帮助人们理解
健壮性:算法能够对于输入的非法数据适当做出反应进行处理,不产生莫名其妙的结果
效率与低存储量需求:效率是指算法的执行时间;存储量需求是指算法执行过程中所需要的最大存储空间。
1.2.2算法效率的度量
1.时间复杂度
一个语句的频度是指该语句在算法中被重复执行的次数。算法中所有语句的频度之和记为T(n),它是该算法问题规模n的函数,时间复杂度主要分析T(n)的数量级。
算法中基本运算(最深层循环内的语句)的频度f(n)与T(n)同数量级,因此算法时间复杂度记为
T(n)=O(f(n))
常见的渐进时间复杂度为
2.空间复杂度
算法的空间复杂度S(n)定义为该算法所耗费的存储空间,它是问题规模n的函数。记为S(n)=O(g(n))。