欧拉函数有两种基本写法,分别是直接法和打表法
欧拉函数定义:对正整数n,欧拉函数是少于或等于n的数中与n互质的数的数目。
定义式:Euler(n)=n(1-1/p1)(1-1/p2)(1-1/p3)…(1-1/pn)
p1,p2,p3…pn是n的所有质因数,n是不为0的整数。
推导:
。若n为质数,Euler(n)=n-1;
。如果n是某个素数p的k次幂,Euler(n)=pk(1-1/p)=(p-1)p(k-1),因为p的倍数之外,n与其他数gcd都为1;
。若存在两个互质的数m,n,可得Euler(m*n)=Euler(m)Euler(n);
。当n为奇数的时候,Euler(2n)=Euler(n);
代码实现
直接法在数据较大的时候,比如数据到10^9的时候打表用数组存会超内存,就可以用直接法,在多次用到欧拉函数时可以用打表法。
直接法
int Euler(int x)
{
int res=x,a=x;
for(int i=2;i*i<=a;i++){
if(a%i == 0){
res=res/i*(i-1);
while(a%i == 0) a=a/i;
}
}
if(a>1) res=res/a*(a-1);
return res;
}
打表法
typedef Maxn 100005//或者其他数字
//......
int p[Maxn];
for(int i=1;i<=Maxn;i++)
p[i]=i;
for(int i=2;i<=Maxn;i+=2)
p[i]=p[i]/2;
for(int i=3;i<=Maxn;i+=2){
if(p[i] == i){
for(int j=i;j<=Maxn;j+=i)
p[j]=p[j]/i*(i-1);
}
}