day56 动态规划part16● 583. 两个字符串的删除操作 ● 72. 编辑距离 ● 编辑距离总结篇

文章介绍了如何使用动态规划方法解决编辑距离问题,涉及字符串的删除、替换和最长公共子序列,展示了如何通过状态转移方程计算两个字符串转换所需的最少操作步数。
摘要由CSDN通过智能技术生成

两个字符串都可以删除。一遍过。

class Solution {
public:
    int minDistance(string word1, string word2) {
        int len1=word1.size();
        int len2=word2.size();
        vector<vector<int>> dp(len1+1,vector<int>(len2+1,0));
        for(int i=1;i<=len2;i++){
            dp[0][i]=i;
        }
        for(int i=1;i<=len1;i++){
            dp[i][0]=i;
        }
        for(int i=1;i<=len1;i++){
            for(int j=1;j<=len2;j++){
                if(word1[i-1]==word2[j-1]){
                    dp[i][j]=min(dp[i-1][j-1],dp[i-1][j]+1);
                    dp[i][j]=min(dp[i][j],dp[i][j-1]+1);
                }
                else{
                    dp[i][j]=min(dp[i-1][j]+1,dp[i][j-1]+1);
                }
                
            }
        }
        return dp[len1][len2];
    }
};

看了题解发现也可以转为最长公共子序列。

动态规划二

本题和动态规划:1143.最长公共子序列 (opens new window)基本相同,只要求出两个字符串的最长公共子序列长度即可,那么除了最长公共子序列之外的字符都是必须删除的,最后用两个字符串的总长度减去两个最长公共子序列的长度就是删除的最少步数。

class Solution {
public:
    int minDistance(string word1, string word2) {
        vector<vector<int>> dp(word1.size()+1, vector<int>(word2.size()+1, 0));
        for (int i=1; i<=word1.size(); i++){
            for (int j=1; j<=word2.size(); j++){
                if (word1[i-1] == word2[j-1]) dp[i][j] = dp[i-1][j-1] + 1;
                else dp[i][j] = max(dp[i-1][j], dp[i][j-1]);
            }
        }
        return word1.size()+word2.size()-dp[word1.size()][word2.size()]*2;
    }
};

 

编辑距离是用动规来解决的经典题目,这道题目看上去好像很复杂,但用动规可以很巧妙的算出最少编辑距离。看了题解,但其实递推关系在由之前题目的基础下是好写的。

 dp[i][j] 表示以下标i-1为结尾的字符串word1,和以下标j-1为结尾的字符串word2,最近编辑距离为dp[i][j]

if (word1[i - 1] == word2[j - 1]) 那么说明不用任何编辑,dp[i][j] 就应该是 dp[i - 1][j - 1],即dp[i][j] = dp[i - 1][j - 1];

在整个动规的过程中,最为关键就是正确理解dp[i][j]的定义!

if (word1[i - 1] != word2[j - 1]),此时就需要编辑了,如何编辑呢?

  • 操作一:word1删除一个元素,那么就是以下标i - 2为结尾的word1 与 j-1为结尾的word2的最近编辑距离 再加上一个操作。

即 dp[i][j] = dp[i - 1][j] + 1;

  • 操作二:word2删除一个元素,那么就是以下标i - 1为结尾的word1 与 j-2为结尾的word2的最近编辑距离 再加上一个操作。

即 dp[i][j] = dp[i][j - 1] + 1;

操作三:替换元素,word1替换word1[i - 1],使其与word2[j - 1]相同,此时不用增删加元素。

可以回顾一下,if (word1[i - 1] == word2[j - 1])的时候我们的操作 是 dp[i][j] = dp[i - 1][j - 1] 对吧。

那么只需要一次替换的操作,就可以让 word1[i - 1] 和 word2[j - 1] 相同。

所以 dp[i][j] = dp[i - 1][j - 1] + 1;

class Solution {
public:
    int minDistance(string word1, string word2) {
        int len1=word1.size();
        int len2=word2.size();
        vector<vector<int>>  dp(len1+1,vector<int>(len2+1,0));
        for(int i=1;i<=len1;i++)
        dp[i][0]=i;
        for(int i=1;i<=len2;i++){
            dp[0][i]=i;
        }
        for(int i=1;i<=len1;i++){
            for(int j=1;j<=len2;j++){
                if(word1[i-1]==word2[j-1]){
                    dp[i][j]=dp[i-1][j-1];
                }
                else{
                    dp[i][j]=min(dp[i-1][j-1],dp[i-1][j])+1;
                    dp[i][j]=min(dp[i][j],dp[i][j-1]+1);
                }
            }
        }
        return dp[len1][len2];
    }
};

总结,有三道题引出编辑距离:

判断子序列

动态规划:392.判断子序列 (opens new window)给定字符串 s 和 t ,判断 s 是否为 t 的子序列。

这道题目 其实是可以用双指针或者贪心的的,但是我在开篇的时候就说了这是编辑距离的入门题目,因为从题意中我们也可以发现,只需要计算删除的情况,不用考虑增加和替换的情况。

  • if (s[i - 1] == t[j - 1])
    • t中找到了一个字符在s中也出现了
  • if (s[i - 1] != t[j - 1])
    • 相当于t要删除元素,继续匹配

状态转移方程:

if (s[i - 1] == t[j - 1]) dp[i][j] = dp[i - 1][j - 1] + 1;
else dp[i][j] = dp[i][j - 1];

 不同的子序列

动态规划:115.不同的子序列 (opens new window)给定一个字符串 s 和一个字符串 t ,计算在 s 的子序列中 t 出现的个数。

本题虽然也只有删除操作,不用考虑替换增加之类的,但相对于动态规划:392.判断子序列 (opens new window)就有难度了,这道题目双指针法可就做不了。

当s[i - 1] 与 t[j - 1]相等时,dp[i][j]可以有两部分组成。

一部分是用s[i - 1]来匹配,那么个数为dp[i - 1][j - 1]。

一部分是不用s[i - 1]来匹配,个数为dp[i - 1][j]。

例如: s:bagg 和 t:bag ,s[3] 和 t[2]是相同的,但是字符串s也可以不用s[3]来匹配,即用s[0]s[1]s[2]组成的bag。

当然也可以用s[3]来匹配,即:s[0]s[1]s[3]组成的bag。

所以当s[i - 1] 与 t[j - 1]相等时,dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j];

当s[i - 1] 与 t[j - 1]不相等时,dp[i][j]只有一部分组成,不用s[i - 1]来匹配,即:dp[i - 1][j]

所以递推公式为:dp[i][j] = dp[i - 1][j];

状态转移方程:

if (s[i - 1] == t[j - 1]) {
    dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j];
} else {
    dp[i][j] = dp[i - 1][j];
}

两个字符串删除操作

动态规划:583.两个字符串的删除操作 (opens new window)给定两个单词 word1 和 word2,找到使得 word1 和 word2 相同所需的最少步数,每步可以删除任意一个字符串中的一个字符。

本题和动态规划:115.不同的子序列 (opens new window)相比,其实就是两个字符串可以都可以删除了,情况虽说复杂一些,但整体思路是不变的。

  • 当word1[i - 1] 与 word2[j - 1]相同的时候
  • 当word1[i - 1] 与 word2[j - 1]不相同的时候

当word1[i - 1] 与 word2[j - 1]相同的时候,dp[i][j] = dp[i - 1][j - 1];

当word1[i - 1] 与 word2[j - 1]不相同的时候,有三种情况:

情况一:删word1[i - 1],最少操作次数为dp[i - 1][j] + 1

情况二:删word2[j - 1],最少操作次数为dp[i][j - 1] + 1

情况三:同时删word1[i - 1]和word2[j - 1],操作的最少次数为dp[i - 1][j - 1] + 2

那最后当然是取最小值,所以当word1[i - 1] 与 word2[j - 1]不相同的时候,递推公式:dp[i][j] = min({dp[i - 1][j - 1] + 2, dp[i - 1][j] + 1, dp[i][j - 1] + 1});

状态转移方程:

if (word1[i - 1] == word2[j - 1]) {
    dp[i][j] = dp[i - 1][j - 1];
} else {
    dp[i][j] = min({dp[i - 1][j - 1] + 2, dp[i - 1][j] + 1, dp[i][j - 1] + 1});
}

编辑距离

动态规划:72.编辑距离 (opens new window)给你两个单词 word1 和 word2,请你计算出将 word1 转换成 word2 所使用的最少操作数 。

编辑距离终于来了,有了前面三道题目的铺垫,应该有思路了,本题是两个字符串可以增删改,比 动态规划:判断子序列 (opens new window)动态规划:不同的子序列 (opens new window)动态规划:两个字符串的删除操作 (opens new window)都要复杂的多。

在确定递推公式的时候,首先要考虑清楚编辑的几种操作,整理如下:

  • if (word1[i - 1] == word2[j - 1])
    • 不操作
  • if (word1[i - 1] != word2[j - 1])

也就是如上四种情况。

if (word1[i - 1] == word2[j - 1]) 那么说明不用任何编辑,dp[i][j] 就应该是 dp[i - 1][j - 1],即dp[i][j] = dp[i - 1][j - 1];

此时可能有同学有点不明白,为啥要即dp[i][j] = dp[i - 1][j - 1]呢?

那么就在回顾上面讲过的dp[i][j]的定义,word1[i - 1] 与 word2[j - 1]相等了,那么就不用编辑了,以下标i-2为结尾的字符串word1和以下标j-2为结尾的字符串word2的最近编辑距离dp[i - 1][j - 1] 就是 dp[i][j]了。

在下面的讲解中,如果哪里看不懂,就回想一下dp[i][j]的定义,就明白了。

在整个动规的过程中,最为关键就是正确理解dp[i][j]的定义!

if (word1[i - 1] != word2[j - 1]),此时就需要编辑了,如何编辑呢?

操作一:word1增加一个元素,使其word1[i - 1]与word2[j - 1]相同,那么就是以下标i-2为结尾的word1 与 i-1为结尾的word2的最近编辑距离 加上一个增加元素的操作。

即 dp[i][j] = dp[i - 1][j] + 1;

操作二:word2添加一个元素,使其word1[i - 1]与word2[j - 1]相同,那么就是以下标i-1为结尾的word1 与 j-2为结尾的word2的最近编辑距离 加上一个增加元素的操作。

即 dp[i][j] = dp[i][j - 1] + 1;

这里有同学发现了,怎么都是添加元素,删除元素去哪了。

word2添加一个元素,相当于word1删除一个元素,例如 word1 = "ad" ,word2 = "a",word2添加一个元素d,也就是相当于word1删除一个元素d,操作数是一样!

操作三:替换元素,word1替换word1[i - 1],使其与word2[j - 1]相同,此时不用增加元素,那么以下标i-2为结尾的word1 与 j-2为结尾的word2的最近编辑距离 加上一个替换元素的操作。

即 dp[i][j] = dp[i - 1][j - 1] + 1;

综上,当 if (word1[i - 1] != word2[j - 1]) 时取最小的,即:dp[i][j] = min({dp[i - 1][j - 1], dp[i - 1][j], dp[i][j - 1]}) + 1;

递归公式代码如下:

if (word1[i - 1] == word2[j - 1]) {
    dp[i][j] = dp[i - 1][j - 1];
}
else {
    dp[i][j] = min({dp[i - 1][j - 1], dp[i - 1][j], dp[i][j - 1]}) + 1;
}

 

  • 22
    点赞
  • 27
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值