
机器学习
文章平均质量分 68
一只土豆酱
这个作者很懒,什么都没留下…
展开
-
梯度下降和正规方程——土豆酱的个人笔记
提示:该文章不需要任何高数以外的数学基础(误),所有的公式亲姥姥式推导????如有错误,欢迎评论区留言指正噢文章目录开始补充:一些涉及到的矩阵运算1. 关于矩阵乘法2. 关于矩阵转置3. 关于矩阵的逆3.1 逆矩阵的定义3.2 求逆矩阵3.3 关于(A−1)T=(AT)−1(A^{-1})^T=(A^T)^{-1}(A−1)T=(AT)−14. 关于矩阵求导续正规方程续梯度下降总结开始先准备梯度下降和正规方程分别需要的数据和目标提示:梯度下降和正规方程都涉及到对J(θ)J(\theta)J(原创 2021-11-15 01:17:39 · 1050 阅读 · 0 评论 -
土豆酱的个人笔记——最大似然估计与对数几率回归
最大似然估计最大似然估计是个什么东西?千万别被概率论公式的可怕名字吓到。其实最大似然估计就是拟合,对m次试验结果的用一个函数拟合,找到最贴合的函数的参数组合。我们先从一个简单的例子来理解,有若干白球和黑球,随机有放回抽取10次,抽到6个白球,问白球的占比最有可能多大?(相信各位看官马上就会想到3/5)没错!但我们就要搞复杂一点:得到这样的实验结果的概率用一个关于白球占比(设为a)的函数...原创 2020-04-21 20:21:30 · 533 阅读 · 0 评论