机器学习
文章平均质量分 68
一只土豆酱
这个作者很懒,什么都没留下…
展开
-
梯度下降和正规方程——土豆酱的个人笔记
提示:该文章不需要任何高数以外的数学基础(误),所有的公式亲姥姥式推导???? 如有错误,欢迎评论区留言指正噢 文章目录开始补充:一些涉及到的矩阵运算1. 关于矩阵乘法2. 关于矩阵转置3. 关于矩阵的逆3.1 逆矩阵的定义3.2 求逆矩阵3.3 关于(A−1)T=(AT)−1(A^{-1})^T=(A^T)^{-1}(A−1)T=(AT)−14. 关于矩阵求导续正规方程续梯度下降总结 开始 先准备梯度下降和正规方程分别需要的数据和目标 提示:梯度下降和正规方程都涉及到对J(θ)J(\theta)J(原创 2021-11-15 01:17:39 · 1034 阅读 · 0 评论 -
土豆酱的个人笔记——最大似然估计与对数几率回归
最大似然估计 最大似然估计是个什么东西?千万别被概率论公式的可怕名字吓到。其实最大似然估计就是拟合,对m次试验结果的用一个函数拟合,找到最贴合的函数的参数组合。 我们先从一个简单的例子来理解,有若干白球和黑球,随机有放回抽取10次,抽到6个白球,问白球的占比最有可能多大? (相信各位看官马上就会想到3/5) 没错! 但我们就要搞复杂一点: 得到这样的实验结果的概率用一个关于白球占比(设为a)的函数...原创 2020-04-21 20:21:30 · 518 阅读 · 0 评论