强化学习-基本概念

state:agent相对于环境的status。

action:基于state可采取的行动。

state transtion:通过action从state1变换到state2。

policy:告诉agent在对应state下执行哪种action。

reward:agent在设计时会朝着reward期望最多的方向前进,其主要依赖当前的state和action。

trajectory:state-action-reward链,遇到终点后的trajectory也可以叫episode。

return:trajectory中所有的reward求和。

discounted return:在return中各项reward前×对应次方的gamma。

MDP(Markov decision process):

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值