LeetCode题解 - 动态规划-股票买卖
文章目录
参考文章:labuladong微信公众号,作者:labuladong,#手把手刷动态规划系列文章,很棒的公众号,推荐给大家
一、穷举框架
首先,还是一样的思路:如何穷举?这里,我们不用递归思想进行穷举,而是利用「状态」进行穷举。
看看总共有几种「状态」,再找出每个「状态」对应的「选择」。我们要穷举所有「状态」,穷举的目的是根据对应的「选择」更新状态。看图,就是这个意思。
具体到当前问题,每天都有三种「选择」:买入、卖出、无操作,我们用 buy, sell, rest 表示这三种选择。
但问题是,并不是每天都可以任意选择这三种选择的,因为 sell 必须在 buy 之后,buy 必须在 sell 之后(第一次除外)。那么 rest 操作还应该分两种状态,一种是 buy 之后的 rest(持有了股票),一种是 sell 之后的 rest(没有持有股票)。而且别忘了,我们还有交易次数 k 的限制,就是说你 buy 还只能在 k > 0 的前提下操作。
很复杂对吧,不要怕,我们现在的目的只是穷举,你有再多的状态,老夫要做的就是一把梭全部列举出来。这个问题的「状态」有三个,第一个是天数,第二个是当天允许交易的最大次数,第三个是当前的持有状态(即之前说的 rest 的状态,我们不妨用 1 表示持有,0 表示没有持有)。
我们用一个三维数组 dp 就可以装下这几种状态的全部组合,用 for 循环就能完成穷举:
而且我们可以用自然语言描述出每一个状态的含义,比如说 dp[3][2][1]
的含义就是:今天是第三天,我现在手上持有着股票,至今最多进行 2 次交易。再比如 dp[2][3][0]
的含义:今天是第二天,我现在手上没有持有股票,至今最多进行 3 次交易。很容易理解,对吧?
我们想求的最终答案是 dp[n - 1][K][0]
,即最后一天,最多允许 K 次交易,所能获取的最大利润。读者可能问为什么不是 dp[n - 1][K][1]
?因为 [1] 代表手上还持有股票,[0] 表示手上的股票已经卖出去了,很显然后者得到的利润一定大于前者。
二、状态转移框架
现在,我们完成了「状态」的穷举,我们开始思考每种「状态」有哪些「选择」,应该如何更新「状态」。
因为我们的选择是 buy, sell, rest,而这些选择是和「持有状态」相关的,所以只看「持有状态」,可以画个状态转移图。
通过这个图可以很清楚地看到,每种状态(0 和 1)是如何转移而来的。根据这个图,我们来写一下状态转移方程:
这个解释应该很清楚了,如果 buy,就要从利润中减去prices[i]
,如果 sell,就要给利润增加 prices[i]
。今天的最大利润就是这两种可能选择中较大的那个。而且注意 k 的限制,我们在选择 buy 的时候,把最大交易数 k 减小了 1,很好理解吧,当然你也可以在 sell 的时候减 1,一样的。
现在,我们已经完成了动态规划中最困难的一步:状态转移方程。**如果之前的内容你都可以理解,那么你已经可以秒杀所有问题了,只要套这个框架就行了。**不过还差最后一点点,就是定义 base case,即最简单的情况。
把上面的状态转移方程总结一下:
读者可能会问,这个数组索引是 -1 怎么编程表示出来呢,负无穷怎么表示呢?这都是细节问题,有很多方法实现。现在整体框架已经完成,下面开始具体化。
三、秒杀题目
121. 买卖股票的最佳时机(简单)
给定一个数组 prices
,它的第 i
个元素 prices[i]
表示一支给定股票第 i
天的价格。你只能选择 某一天 买入这只股票,并选择在 未来的某一个不同的日子 卖出该股票。设计一个算法来计算你所能获取的最大利润。返回你可以从这笔交易中获取的最大利润。如果你不能获取任何利润,返回 0
。
输入:[7,1,5,3,6,4]
输出:5
解释:在第 2 天(股票价格 = 1)的时候买入,在第 5 天(股票价格 = 6)的时候卖出,最大利润 = 6-1 = 5 。
注意利润不能是 7-1 = 6, 因为卖出价格需要大于买入价格;同时,你不能在买入前卖出股票。
解题思路:这是 k = 1 的情况,直接套状态转移方程,根据 base case,可以做一些化简:
对 i 的 base case 进行处理,而且注意一下状态转移方程,新状态只和相邻的一个状态有关,其实不用整个 dp 数组,只需要两个变量储存所需的状态就足够了,这样可以把空间复杂度降到 O(1):
class Solution {
public int maxProfit(int[] prices) {
if(prices.length == 0) return 0;
int n = prices.length;
int dp_i_0 = 0, dp_i_1 = Integer.MIN_VALUE; // base case
for(int i = 0; i < n; i++){
dp_i_0 = Math.max(dp_i_0, dp_i_1 + prices[i]);
dp_i_1 = Math.max(dp_i_1, -prices[i]);
}
return dp_i_0;
}
}
122. 买卖股票的最佳时机 II(简单)
给定一个数组 prices
,其中 prices[i]
是一支给定股票第 i
天的价格。设计一个算法来计算你所能获取的最大利润。你可以尽可能地完成更多的交易(多次买卖一支股票)。注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
输入: prices = [7,1,5,3,6,4]
输出: 7
解释: 在第 2 天(股票价格 = 1)的时候买入,在第 3 天(股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4 。
随后,在第 4 天(股票价格 = 3)的时候买入,在第 5 天(股票价格 = 6)的时候卖出, 这笔交易所能获得利润 = 6-3 = 3 。
解题思路:这是 k = + infinity 的情况,如果 k 为正无穷,那么就可以认为 k 和 k - 1 是一样的。可以这样改写框架:
直接翻译成代码即可:
class Solution {
public int maxProfit(int[] prices) {
if(prices.length == 0) return 0;
int n = prices.length;
int dp_i_0 = 0, dp_i_1 = Integer.MIN_VALUE; // base case
for(int i = 0; i < n; i++){
int temp = dp_i_0;
dp_i_0 = Math.max(dp_i_0, dp_i_1 + prices[i]);
dp_i_1 = Math.max(dp_i_1, temp - prices[i]);
}
return dp_i_0;
}
}
309. 最佳买卖股票时机含冷冻期(中等)
给定一个整数数组,其中第 i 个元素代表了第 i 天的股票价格 。设计一个算法计算出最大利润。在满足以下约束条件下,你可以尽可能地完成更多的交易(多次买卖一支股票):
- 你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
- 卖出股票后,你无法在第二天买入股票 (即冷冻期为 1 天)
输入: [1,2,3,0,2]
输出: 3
解释: 对应的交易状态为: [买入, 卖出, 冷冻期, 买入, 卖出]
解题思路:k = +infinity with cooldown,每次 sell 之后要等一天才能继续交易。只要把这个特点融入上一题的状态转移方程即可:
直接翻译成代码即可:
class Solution {
public int maxProfit(int[] prices) {
int n = prices.length;
if(n == 0) return 0;
int dp_i_0 = 0, dp_i_1 = Integer.MIN_VALUE;
int dp_pre_0 = 0;
for(int i = 0; i < n; i++){
int temp = dp_i_0;
dp_i_0 = Math.max(dp_i_0, dp_i_1 + prices[i]);
dp_i_1 = Math.max(dp_i_1, dp_pre_0 - prices[i]);
dp_pre_0 = temp;
}
return dp_i_0;
}
}
714. 买卖股票的最佳时机含手续费(中等)
给定一个整数数组 prices
,其中第 i
个元素代表了第 i
天的股票价格 ;非负整数 fee
代表了交易股票的手续费用。你可以无限次地完成交易,但是你每笔交易都需要付手续费。如果你已经购买了一个股票,在卖出它之前你就不能再继续购买股票了。返回获得利润的最大值。
注意:这里的一笔交易指买入持有并卖出股票的整个过程,每笔交易你只需要为支付一次手续费。
输入: prices = [1, 3, 2, 8, 4, 9], fee = 2
输出: 8
解释: 能够达到的最大利润:
在此处买入 prices[0] = 1
在此处卖出 prices[3] = 8
在此处买入 prices[4] = 4
在此处卖出 prices[5] = 9
总利润: ((8 - 1) - 2) + ((9 - 4) - 2) = 8.
解题思路:k = +infinity with fee,每次交易要支付手续费,只要把手续费从利润中减去即可:
直接翻译成代码即可:
class Solution {
public int maxProfit(int[] prices, int fee) {
int n = prices.length;
if(n == 0) return 0;
int dp_i_0 = 0, dp_i_1 = Integer.MIN_VALUE;
for(int i = 0; i < n; i++){
int temp = dp_i_0;
dp_i_0 = Math.max(dp_i_0, dp_i_1 + prices[i]);
dp_i_1 = Math.max(dp_i_1, temp - prices[i]- fee);
}
return dp_i_0;
}
}
123. 买卖股票的最佳时机 III (困难)
给定一个数组,它的第 i
个元素是一支给定的股票在第 i
天的价格。设计一个算法来计算你所能获取的最大利润。你最多可以完成 两笔 交易。
注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
输入:prices = [3,3,5,0,0,3,1,4]
输出:6
解释:在第 4 天(股票价格 = 0)的时候买入,在第 6 天(股票价格 = 3)的时候卖出,这笔交易所能获得利润 = 3-0 = 3 。
随后,在第 7 天(股票价格 = 1)的时候买入,在第 8 天 (股票价格 = 4)的时候卖出,这笔交易所能获得利润 = 4-1 = 3 。
解题思路:k = 2,k = 2 和前面题目的情况稍微不同,因为上面的情况都和 k 的关系不太大。要么 k 是正无穷,状态转移和 k 没关系了;要么 k = 1,跟 k = 0 这个 base case 挨得近,最后也被消掉了。这道题 k = 2 和后面要讲的 k 是任意正整数的情况中,对 k 的处理就凸显出来了。我们直接写代码,边写边分析原因。
按照之前的代码,我们可能想当然这样写代码(错误的):
为什么错误?我这不是照着状态转移方程写的吗?
还记得前面总结的「穷举框架」吗?就在强调必须穷举所有状态。其实我们之前的解法,都在穷举所有状态,只是之前的题目中 k 都被化简掉了,所以没有对 k 的穷举。比如说第一题,k = 1:
这道题由于没有消掉 k 的影响,所以必须要用 for 循环对 k 进行穷举才是正确的:
class Solution {
public int maxProfit(int[] prices) {
int n = prices.length;
if(n == 0) return 0;
int max_k = 2;
int[][][] dp = new int[n][max_k + 1][2];
//base case
for (int k = 1; k <= max_k; k++) {
dp[0][k][1] = -prices[0];
}
for(int i = 1; i < n; i++){
for(int k = 1; k <= max_k; k++){
dp[i][k][0] = Math.max(dp[i - 1][k][0], dp[i - 1][k][1] + prices[i]);
dp[i][k][1] = Math.max(dp[i - 1][k][1], dp[i - 1][k - 1][0] - prices[i]);
}
}
return dp[n - 1][max_k][0];
}
}
188. 买卖股票的最佳时机 IV (困难)
给定一个整数数组 prices
,它的第 i
个元素 prices[i]
是一支给定的股票在第 i
天的价格。设计一个算法来计算你所能获取的最大利润。你最多可以完成 k 笔交易。**注意:**你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
输入:k = 2, prices = [3,2,6,5,0,3]
输出:7
解释:在第 2 天 (股票价格 = 2) 的时候买入,在第 3 天 (股票价格 = 6) 的时候卖出, 这笔交易所能获得利润 = 6-2 = 4 。
随后,在第 5 天 (股票价格 = 0) 的时候买入,在第 6 天 (股票价格 = 3) 的时候卖出, 这笔交易所能获得利润 = 3-0 = 3 。
解题思路:k = any integer,这题和 k = 2 没啥区别,可以直接套上一题的第一个解法。但是提交之后会出现一个超内存的错误,原来是传入的 k 值可以任意大,导致 dp 数组太大了。现在想想,交易次数 k 最多能有多大呢?一次交易由买入和卖出构成,至少需要两天。所以说有效的限制次数 k 应该不超过 n/2
class Solution {
public int maxProfit(int k, int[] prices) {
int n = prices.length;
if(n == 0) return 0;
k = Math.min(k, n / 2);
int[][][] dp = new int[n][k + 1][2];
for (int j = 1; j <= k; j++) {
dp[0][j][1] = -prices[0];
}
for(int i = 1; i < n; i++){
for(int j = 1; j <= k; j++){
dp[i][j][0] = Math.max(dp[i - 1][j][0], dp[i - 1][j][1] + prices[i]);
dp[i][j][1] = Math.max(dp[i - 1][j][1], dp[i - 1][j - 1][0] - prices[i]);
}
}
return dp[n - 1][k][0];
}
}
至此,6 道题目通过一个状态转移方程全部解决。
四、最后总结
本文给大家讲了如何通过状态转移的方法解决复杂的问题,用一个状态转移方程秒杀了 6 道股票买卖问题,现在想想,其实也不算难对吧?而这已经属于动态规划问题中较困难的了。
关键就在于找到所有可能的「状态」,然后想想怎么更新这些「状态」。一般用一个多维 dp 数组储存这些状态,从 base case 开始向后推进,推进到最后的状态,就是我们想要的答案。想想这个过程,你是不是有点理解「动态规划」这个名词的意义了呢?
具体到股票买卖问题,我们发现了三个状态,使用了一个三维数组,无非还是穷举 + 更新,不过我们可以说的高大上一点,这叫「三维 DP」,怕不怕?这个大实话一说,立刻显得你高人一等有没有?