1.最多完成一次交易
1.1 贪心算法
- 思路比较简单,找到最小值作为买入股票状态,最大值作为卖出股票状态,当然前提是买入必须在卖出之前。
- 核心代码为:
int maxProfit(vector<int>& prices) {
int res=0;
int minprice=prices[0];
for(int i=1;i<prices.size();i++){
res=max(res,prices[i]-minprice);
minprice=min(minprice,prices[i]);
}
return res;
}
1.2 动态规划
dp[i][0]
表示当天买入股票状态,它的状态由昨天买入股票或者当天真正买入股票推导而来;dp[i][1]
表示当天卖出股票状态,它的状态由昨天卖出股票状态或者当天真正卖出股票推导而来。
- 初始化:dp[i][0]表示没有任何操作,dp[i][1]表示第一次买进股票获得利润,dp[i][2]表示第一次卖出获得利润。以dp[i][1]为例,它可以由当天买入股票
dp[i][0]-prices[i]
或者当天没有任何操作而是使用前一天的状态 dp[i-1][1]
推导而来。
- 核心代码:
int maxProfit(vector<int>& prices) {
vector<vector<int>> dp(prices.size(),vector<int>(3,0));
dp[0][0]=0;dp[0][1]=-prices[0];dp[0][2]=0;
for(int i=1;i<prices.size();i++){
dp[i][0]=dp[i-1][0];
dp[i][1]=max(dp[i-1][1],dp[i-1][0]-prices[i]);
dp[i][2]=max(dp[i-1][2],dp[i-1][1]+prices[i]);
}
return dp[prices.size()-1][2];
}
2.最多完成两次交易
2.1 贪心算法
- 这道题采用的是中心拓展法,即dpl[i]和dpr[i]分别表示以i为中心左边和右边买卖获得利润的最大值,因此可以遍历i即可得到结果。
int maxProfit(vector<int>& prices) {
int num=prices.size();
vector<int> dpl(num,0);
vector<int> dpr(num,0);
int minPrice=prices[0];
for(int i=1;i<num;i++){
dpl[i]=max(dpl[i-1],prices[i]-minPrice);
minPrice=min(minPrice,prices[i]);
}
int maxPrice=prices[num