动手学数据分析task5

模型搭建和评估

心得:task5讲的是模型的搭建和评估,这就用到了task2讲的处理缺失值和重复值的重要性,学到了逻辑函数模型、随机森林模型的构建模型方法和k-值交叉验证和混淆矩阵的评价方法。
0.初始化
首先,导入所需的包,并且初始化。

import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from IPython.display import Image
%matplotlib inline
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号
plt.rcParams['figure.figsize'] = (10, 6)  # 设置输出图片大小

将plt的语法设置成显示中文和负号。然后读取train文件。
在这里插入图片描述

1.发现有缺失值,将其填充。
Cabin和Embarked是离散值的缺失,Age是连续值的缺失。
对分类变量缺失值:填充某个缺失值字符(NA)、用最多类别的进行填充。
对连续变量缺失值:填充均值、中位数、众数

#对分类变量进行填充
train['Cabin'] = train['Cabin'].fillna('NA')
train['Embarked'] = train['Embarked'].fillna('S')
# 对连续变量进行填充
train['Age'] = train['Age'].fillna(train['Age'].mean())
#检查缺失值比例
train.isnull().sum().sort_values(ascending=False)

对每一列的缺失值进行求和处理,然后按递减的顺序排列。
在这里插入图片描述
2.编码分类变量

#取出所有的输入特征
data = train[['Pclass','Sex','Age','SibSp','Parch','Fare', 'Embarked']]
# 进行虚拟变量转换
data = pd.get_dummies(data)

实现的效果就是把每一个属性可以取到的值都设置成列名,如果取到则为1,未取到则为0,可以对特征更好地观察计算,拿sex来说,分为femalemale两类,所以生成sex_malesex_female两列。embarked分为C,Q,S三类。
在这里插入图片描述

模型搭建

  • 处理完前面的数据我们就得到建模数据,下一步是选择合适模型
  • 在进行模型选择之前我们需要先知道数据集最终是进行监督学习还是无监督学习
  • 除了根据我们任务来选择模型外,还可以根据数据样本量以及特征的稀疏性来决定
  • 刚开始我们总是先尝试使用一个基本的模型来作为其baseline,进而再训练其他模型做对比,最终选择泛化能力或性能比较好的模型

在这里插入图片描述
1.切割训练集和测试集

  • 按比例切割训练集和测试集(一般测试集的比例有30%、25%、20%、15%和10%)
  • 按目标变量分层进行等比切割
  • 设置随机种子以便结果能复现
    切割数据集是为了后续能评估模型泛化能力,sklearn中切割数据集的方法为train_test_split()
from sklearn.model_selection import train_test_split
# 一般先取出X和y后再切割,有些情况会使用到未切割的,这时候X和y就可以用

X = data
y = train['Survived']

# 对数据集进行切割
X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y, random_state=0)

# 查看数据形状
X_train.shape, X_test.shape

train_test_split 函数
简单用法如下:
train_data:所要划分的样本特征集
train_target:所要划分的样本结果。
random_state:是随机数的种子。
随机数种子:其实就是该组随机数的编号,在需要重复试验的时候,保证得到一组一样的随机数。比如你每次都填1,其他参数一样的情况下你得到的随机数组是一样的。但填0或不填,每次都会不一样。
将stratify=X就是按照X中的比例分配
将stratify=y就是按照y中的比例分配

#查看数据形状
X_train.shape, X_test.shape, y_train.shape, y_test.shape 

在这里插入图片描述
2.模型创建

  • 创建基于线性模型的分类模型(逻辑回归)
  • 创建基于树的分类模型(决策树、随机森林)
  • 查看模型的参数,并更改参数值,观察模型变化
    线性模型所在的模块为sklearn.linear_model,树模型所在的模块为sklearn.ensemble
#默认参数逻辑回归模型
lr = LogisticRegression()
lr.fit(X_train, y_train)
# 查看训练集和测试集score值
print("Training set score: {:.2f}".format(lr.score(X_train, y_train)))
print("Testing set score: {:.2f}".format(lr.score(X_test, y_test)))

首先选择逻辑回归模型,然后查看训练集和测试集的score值,结果如下。
在这里插入图片描述
调整参数,继续训练。

#调整参数后的逻辑回归模型
lr2 = LogisticRegression(C=100)
lr2.fit(X_train, y_train)
#调整参数后的逻辑回归模型
lr2 = LogisticRegression(C=100)
lr2.fit(X_train, y_train)

结果如下:
在这里插入图片描述
然后使用随机森林模型:

# 默认参数的随机森林分类模型
rfc = RandomForestClassifier()
rfc.fit(X_train, y_train)
print("Training set score: {:.2f}".format(rfc.score(X_train, y_train)))
print("Testing set score: {:.2f}".format(rfc.score(X_test, y_test)))

得分如下:
在这里插入图片描述
继续对随机森林调整参数:

# 调整参数后的随机森林分类模型
rfc2 = RandomForestClassifier(n_estimators=100, max_depth=5)
rfc2.fit(X_train, y_train)
print("Training set score: {:.2f}".format(rfc2.score(X_train, y_train)))
print("Testing set score: {:.2f}".format(rfc2.score(X_test, y_test)))

结果如下:
在这里插入图片描述
3.输出模型预测结果
输出模型预测分类标签,一般监督模型在sklearn里面有个predict能输出预测标签,predict_proba则可以输出标签概率。

# 预测标签
pred = lr.predict(X_train)
# 此时我们可以看到0和1的数组
pred[:10]
# 预测标签概率
pred_proba = lr.predict_proba(X_train)
pred_proba[:10]

在这里插入图片描述
在这里插入图片描述
标签依据:二项分布,和为1。算出某个值取0和取1的概率,哪一个概率大就把他划分到哪一类中去。
在这里插入图片描述

模型评估

  • 模型评估是为了知道模型的泛化能力。
  • 交叉验证(cross-validation)是一种评估泛化性能的统计学方法,它比单次划分训练集和测试集的方法更加稳定、全面。
  • 在交叉验证中,数据被多次划分,并且需要训练多个模型。
  • 最常用的交叉验证是 k 折交叉验证(k-fold cross-validation),其中 k 是由用户指定的数字,通常取 5 或 10。
  • 准确率(precision)度量的是被预测为正例的样本中有多少是真正的正例。
  • 召回率(recall)度量的是正类样本中有多少被预测为正类。
  • f-分数是准确率与召回率的调和平均。

1.交叉验证
用10折交叉验证来评估逻辑回归模型,可以验证10次,是因为每次都去1/10作为测试集,其他剩下的9/10作为训练集。

from sklearn.model_selection import cross_val_score
lr = LogisticRegression(C=100)
scores = cross_val_score(lr, X_train, y_train, cv=10)

k折交叉验证的分数,
在这里插入图片描述

#平均交叉验证分数
print("Average cross-validation score: {:.2f}".format(scores.mean()))

在这里插入图片描述
2.混淆矩阵

  • 计算二分类问题的混淆矩阵
  • 计算精确率、召回率以及f-分数
    在这里插入图片描述
    在这里插入图片描述
    混淆矩阵的方法在sklearn中的sklearn.metrics模块,注意混淆矩阵需要输入真实标签和预测标签
# 训练模型
from sklearn.metrics import confusion_matrix
lr = LogisticRegression(C=100)
lr.fit(X_train, y_train)
# 模型预测结果
pred = lr.predict(X_train)

# 混淆矩阵
confusion_matrix(y_train, pred)

在这里插入图片描述

# 精确率、召回率以及f1-score
print(classification_report(y_train, pred))

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值